kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Компьютерное моделирование и вычислительный эксперимент как новый метод научного исследования

Нажмите, чтобы узнать подробности

Реферат на тему "Компьютерное моделирование и вычислительный эксперимент как новый метод научного исследования".

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Компьютерное моделирование и вычислительный эксперимент как новый метод научного исследования»

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОРДОВСКИЙ ГОСУДАРСТВЕННЫЙ

ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ ИМЕНИ М. Е. ЕВСЕВЬЕВА»




Факультет физико-математический


Кафедра информатики и вычислительной техники




РЕФЕРАТ



КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ И ВЫЧИСЛИТЕЛЬНЫЙ ЭСКПЕРИМЕНТ КАК НОВЫЙ МЕТОД НАУЧНОГО ИССЛЕДОВАНИЯ



Автор работы_______________________________________ Е. В. Соколова

Направления подготовки 44.03.05 Педагогическое образование

Профиль Математика. Информатика



Руководитель работы

канд. физ. мат. наук, доцент_______________________ Т. В. Кормилицина





Оценка __________











Саранск 2021

СОДЕРЖАНИЕ


ВВЕДЕНИЕ 3

1 Компьютерное моделирование 4

2 Построение компьютерной модели 5

3 Вычислительный эксперимент 7

4 Компьютерное моделирование и вычислительный эксперимент 9

ЗАКЛЮЧЕНИЕ 16

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 17


ВВЕДЕНИЕ



С древнейших времён человечество развивалось по всем направлениям своей деятельности. Среди людей всегда находились особенно любознательные и целеустремлённые люди, которым не сиделось спокойно, которые всё время искали что-то новое, интересное. Они постоянно что-нибудь изобретали и совершенствовали: строили дворцы, мосты и крепости, изобретали и развивали новые виды оружия. Для этого им постоянно нужно было, до осуществления своих изобретений в металле, дереве или камне, конструировать, моделировать всё это.

Можно представить, как самый древний изобретатель выводил чертёж лука пальцем на песке или углём на стене своей холодной пещеры. Потом, в древнем Египте и Вавилоне чертежи чертились на папирусе и пергаменте. Потом, на много столетий, в конструирование и моделирование пришла бумага.

В 20 веке были целые проектные институты, где тысячи людей работали с чертёжными инструментами. Потом модели их изобретений выполнялись из дерева, пластилина или металла. Так поступают до сих пор с моделями будущих самолётов: их выполняют из металла и испытывают в аэродинамической трубе. Так проверяют устойчивость самолёта при разных скоростях, проверяют воздушные завихрения. После того как модель испытывалась в разных условиях, можно было выполнять её в натуральную величину и испытывать дальше. Все эти построения и испытания моделей занимали очень много времени и сил. И так было до изобретения компьютера.

Одним из самых полезных применений компьютера можно считать компьютерное моделирование. Сложно представить какие великие изобретения могли бы совершить гениальные учёные прошлого, если бы у них в руках было такое средство как компьютерное моделирование.


1 Компьютерное моделирование


Компьютерное моделирование является одним из передовых методов научных исследований, используемым в самых разных областях человеческой деятельности. Вычислительный эксперимент считается разновидностью компьютерного моделирования.

Компьютерное моделирование – один из прогрессивных методов научного исследования, который можно применить в различных сферах деятельности (промышленность, экономика, производство, образование и т.д.).

Компьютерное моделирование как новый метод научных исследований основывается:

- на построении математических моделей для описания изучаемых процессов;

- на использовании новейших вычислительных машин, обладающих высоким быстродействием (миллионы операций в секунду) и способных вести диалог с человеком.

Суть компьютерного моделирования состоит в следующем: на основе математической модели с помощью ЭВМ проводится серия вычислительных экспериментов, т.е. исследуются свойства объектов или процессов, находятся их оптимальные параметры и режимы работы, уточняется модель. Например, располагая уравнением, описывающим протекание того или иного процесса, можно изменяя его коэффициенты, начальные и граничные условия, исследовать, как при этом будет вести себя объект. Более того, можно спрогнозировать поведение объекта в различных условиях.

Различают аналитическое и имитационное моделирование. При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению. При имитационном моделировании исследуются математические модели в виде алгоритма, воспроизводящего функционирование исследуемой системы путем последовательного выполнения большого количества элементарных операций.


2 Построение компьютерной модели


Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов – сначала создание качественной, а затем и количественной модели. Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т. д.

Таким образом, к основным этапам компьютерного моделирования относятся:

1. Постановка задачи, определение объекта моделирования:

на данном этапе происходит сбор информации, формулировка вопроса, определение целей, формы представления результатов, описание данных.

2. Анализ и исследование системы:

анализ системы, содержательное описание объекта, разработка информационной модели, анализ технических и программных средств, разработка структур данных, разработка математической модели.

3. Формализация, то есть переход к математической модели, создание алгоритма:

выбор метода проектирования алгоритма, выбор формы записи алгоритма, выбор метода тестирования, проектирование алгоритма.

4. Программирование:

выбор языка программирования или прикладной среды для моделирования, уточнение способов организации данных, запись алгоритма на выбранном языке программирования (или в прикладной среде).

5. Проведение серии вычислительных экспериментов:

отладка синтаксиса, семантики и логической структуры, тестовые расчеты и анализ результатов тестирования, доработка программы.

6. Анализ и интерпретация результатов:

доработка программы или модели в случае необходимости.

Существует множество программных комплексов и сред, которые позволяют проводить построение и исследование моделей:

- Графические среды

- Текстовые редакторы

- Среды программирования

- Электронные таблицы

- Математические пакеты

- HTML-редакторы

- СУБД

и др.



3 Вычислительный эксперимент


Эксперимент – это опыт, который производится с объектом или моделью. Он заключается в выполнении некоторых действий, чтобы определить, как реагирует экспериментальный образец на эти действия. Вычислительный эксперимент предполагает проведение расчетов с использованием формализованный модели.

Использование компьютерной модели, реализующей математическую модель, аналогично проведению экспериментов с реальным объектом, только вместо реального эксперимента с объектом проводится вычислительный эксперимент с его моделью. Задавая конкретный набор значений исходных параметров модели, в результате вычислительного эксперимента получают конкретный набор значений искомых параметров, исследуют свойства объектов или процессов, находят их оптимальные параметры и режимы работы, уточняют модель. Например, располагая уравнением, описывающим протекание того или иного процесса, можно, изменяя его коэффициенты, начальные и граничные условия, исследовать, как при этом будет вести себя объект. Более того, можно спрогнозировать поведение объекта в различных условиях. Для исследований поведения объекта при новом наборе исходных данных необходимо проведение нового вычислительного эксперимента.

Для проверки адекватности математической модели и реального объекта, процесса или системы результаты исследований на ЭВМ сравниваются с результатами эксперимента на опытном натурном образце. Результаты проверки используются для корректировки математической модели или решается вопрос о применимости построенной математической модели к проектированию либо исследованию заданных объектов, процессов или систем.

Вычислительный эксперимент позволяет заменить дорогостоящий натурный эксперимент расчетами на ЭВМ. Он позволяет в короткие сроки и без значительных материальных затрат осуществить исследование большого числа вариантов проектируемого объекта или процесса для различных режимов его эксплуатации, что значительно сокращает сроки разработки сложных систем и их внедрение в производство.

Самыми перспективными направлениями для вычислительных экспериментов считаются крупные научно-технические и социально-экономические проблемы мирового сообщества, такие как, реализация проектов реакторов атомных электростанций, плотин для гидроэлектростанций, формирование сбалансированных планов для отдельных отраслей, регионов, страны в целом и другие.



4 Компьютерное моделирование и вычислительный эксперимент


Компьютерное моделирование и вычислительный эксперимент как новый метод научного исследования заставляет совершенствовать математический аппарат, используемый при построении математических моделей, позволяет, используя математические методы, уточнять, усложнять математические модели. Наиболее перспективным для проведения вычислительного эксперимента является его использование для решения крупных научно-технических и социально-экономических проблем современности (проектирование реакторов для атомных электростанций, проектирование плотин и гидроэлектростанций, магнитогидродинамических преобразователей энергии, и в области экономики – составление сбалансированного плана для отрасли, региона, для страны и др.). В некоторых процессах, где натурный эксперимент опасен для жизни и здоровья людей, вычислительный эксперимент является единственно возможным (термоядерный синтез, освоение космического пространства, проектирование и исследование химических и других производств).

Многие пользователи, искренне желая применить компьютерное моделирование в своей практической деятельности, сталкиваются с серьезными трудностями при освоении и использовании современных программных средств. Для работы с ними все еще требуются знания, не относящиеся непосредственно к моделированию, а проведение вычислительного эксперимента остается кропотливой и многотрудной работой. В то же время типовых задач моделирования не так уж и много, и для них можно создать удобный и понятный интерфейс в рамках одного, «универсального» пакета.

Создание прототипа универсального пакета из стандартных модулей, ориентированного на пользователя, не являющегося специалистом в области программирования и численного моделирования, приведет к тому, что компьютерное моделирование действительно станет инструментом научного работника, инженера и преподавателя.

Программные средства для моделирования можно разделить на две группы. К первой отнесем пакеты, предназначенные для решения сложных промышленных и научно-исследовательских задач большими производственными или научными коллективами. Пакеты первой группы условно назовем промышленными. Такие проекты невозможны без предварительных исследований, выполняемых отдельными учеными или проектировщиками. Стартовой точкой в них является гипотеза, а основной задачей – ее проверка. Промышленные пакеты слишком сложны и громоздки для проведения исследований на ранних стадиях и тем более обучения, для этого нужны специальные программные средства. Именно они, с нашей точки зрения, и образуют вторую группу пакетов. Назовем пакеты второй группы универсальными, подчеркивая этим, что они уступают по количеству уникальных возможностей промышленным, зато более просты для освоения и доступны отдельному исследователю при решении относительно несложных задач из практически любой прикладной области. Под несложными задачами понимаются задачи, посильные одному разработчику, не являющемуся специалистом в области программирования и методов вычислений. В универсальных пакетах нужны разнообразные численные библиотеки, способные справиться с широким спектром проблем, а не методы, ориентированные на узкий класс задач. Для них нужны графические библиотеки, обеспечивающие показ изучаемого явления с разных сторон, а не одним, принятым в конкретной области, способом и, конечно же, поддержка интерактивного вмешательства в ход компьютерного эксперимента.

С момента появления пакета Simulink универсальные, не ориентированные на конкретные прикладные области пакеты для моделирования и исследования динамических систем в широком понимании этого термина, включая и дискретные, и непрерывные, и гибридные модели, стали повседневной реальностью. Относительная простота и интуитивная ясность входных языков универсальных пакетов в сочетании с разумными требованиями к мощности компьютеров позволяют использовать эти пакеты в учебном процессе. Изучаемые с помощью универсальных пакетов модели можно условно разделить на модели для естественнонаучных областей и модели технических объектов. В первом случае имеем дело с моделью, сведенной к одной, итоговой системе уравнений, или, другими словами, с однокомпонентной моделью, а во втором – со структурированной, многокомпонентной моделью, итоговая система для которой должна строиться автоматически по описанию отдельных компонент.

И среди однокомпонентных, и среди многокомпонентных, наибольший интерес представляют модели, чье поведение меняется во времени в зависимости от наступающих событий. Их часто называют гибридными системами. В отечественной литературе также используются синонимы – непрерывно-дискретные, системы с переменной структурой, реактивные, событийно-управляемые.

Необходимость обеспечения обратной связи между исследователем и моделью опять же приводит нас к событийно-управляемым системам и дополнительно заставляет проводить и визуализировать вычислительный эксперимент в реальном времени. Назовем такой способ познания действительности активным компьютерным экспериментом, в отличие от традиционного пассивного вычислительного эксперимента, план которого может быть составлен заранее.

Отличительной чертой современных пакетов является объектно-ориентированный подход, позволяющий обеспечить еще одно очень важное и характерное для научных исследований и обучения требование — возможность легко пополнять и модифицировать разрабатываемую библиотеку, представляющую обычно последовательность все более сложных моделей, свойства которых приходится постоянно сравнивать.

Практически все существующие современные и широко используемые пакеты не приспособлены в полной мере для проведения активного вычислительного эксперимента.

Из всего множества современных пакетов моделирования, пакеты Model Vision Studium(MVS), AnyLogic наиболее приспособлены для проведения активных компьютерных экспериментов. Пакет AnyLogic разработанный фирмой «Экспериментальные объектные технологии» более мощная профессиональная система моделирования, которая для непрерывных и гибридных моделей использует решения, апробированные в пакете Model Vision Studium, но является слишком сложным и дорогим. В силу этого и того, что разработчики пакета визуального моделирования MVS решили продолжать совершенствовать свой пакет, позиционируя его как компактный, несложный и недорогой инструмент для научных исследований и обучения. Кроме всего этого разработчики пакета визуального моделирования MVS объявили также об изменении политики его распространения. Вместо ограниченной бесплатной версии MVS Lite предлагается полноценная, свободная для некоммерческого использования версия MVS Free. На рисунке 1 представлен пример визуального моделирования в MVS.

Рисунок 1 – Визуальное моделирование в Model Vision Studium

MVS использует современные объектно-ориентированные входные языки, используют гибридные автоматы как элементы входного языка, однако не может работать с неориентированными блоками. Пакет Model Vision Studium снабжен редактором трехмерной анимации (Рисунок 2), компактен и прост в освоении.

Рисунок 2 – Редактор трехмерной анимации

Достоинства гибридного автомата при использовании его в пакетах моделирования:

– компактно и наглядно описывает всевозможные варианты смены поведения подобно тому, как конечный автомат столь же наглядно описывает все допустимые цепочки принимаемого им языка;

– требует указания в явном виде особых событий, приводящих к смене поведения, и облегчает работу численных методов в окрестности точки смены поведения;

– позволяет ввести «алгебру» локальных поведений, упрощая тем самым применение объектно-ориентированного подхода;

– позволяет легко описать сложные эксперименты с моделью, облегчая проектирование испытательных стендов;

– позволяет в наглядной форме следить за появлением событий, приводящих к смене поведения, и самими переключениями при отладке (Рисунок 3).

Рисунок 3 – Переключение при отладке

Основным направлением развития пакета MVS является объектно-ориентированное моделирование непрерывно-дискретных систем с использованием формализма гибридного автомата. В ближайшее время предполагается внедрить в пакет «свободную» форму записи уравнений (с использованием производных произвольного порядка, а также уравнений, не разрешенных относительно производных), неориентированные блоки и связи, а также динамические структуры и графический язык управления экспериментом на основе карт состояния.

Рисунок 4 – Главное окно пакета MVS Free 3.1



ЗАКЛЮЧЕНИЕ


Человечество в своей деятельности (научной, образовательной, технологической, художественной) постоянно создает и использует модели окружающего мира. Модели позволяют представить в наглядной форме объекты и процессы, недоступные для непосредственного восприятия (очень большие или очень маленькие объекты, очень быстрые или очень медленные).

Модели играют чрезвычайно важную роль в проектировании и создании различных технических устройств, машин и механизмов, зданий, электрических цепей и т. д. Развитие науки невозможно без создания теоретических моделей (теорий, законов, гипотез и пр.), отражающих строение, свойства и поведение реальных объектов.

Все художественное творчество фактически является процессом создания моделей. Более того, практически любое литературное произведение может рассматриваться как модель реальной человеческой жизни. Моделями в художественной форме отражающими реальную действительность, являются также живописные полотна, скульптуры, театральные постановки и пр. Моделирование – это метод познания. А познавая мир, человечество движется вперед, развивается. В этом и заключается жизнь.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


  1. Акопов, А. С. Компьютерное моделирование : учебник и практикум для среднего профессионального образования / А. С. Акопов. – Москва : Издательство Юрайт, 2020. – 389 с. – URL: https://urait.ru/bcode/456787 (дата обращения: 24.10.2021). – ISBN 978-5-534-10712-8. – Текст : электронный.

  2. Компьютерное моделирование и вычислительный эксперимент / В. В. Егоров, В. В. Криворучко, Н. Н. Шпигарь, О. П. Заречная. – Новосибирск : ОАО «Новосибирское книжное издательство», 2009. – 173 с. – ISBN 978-5-7620-1361-1. – Текст : электронный.

  3. Магомедов М.С., Муртузалиева Н.М. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ И ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ КАК НОВАЯ ФОРМА НАУЧНОГО ПОЗНАНИЯ // Материалы VII Международной студенческой научной конференции «Студенческий научный форум» URL: https://scienceforum.ru/2015/article/2015015765 (дата обращения: 25.10.2021). – Текст : электронный.

  4. Сафонов, В. И. Компьютерное моделирование : учебное пособие / В. И. Сафонов ; Мордовский государственный педагогический институт. – Саранск : РИЦ МГПИ, 2009. – 92 с. – ISBN 978-5-8156-0252-6. – Текст : электронный.


Получите в подарок сайт учителя

Предмет: Прочее

Категория: Прочее

Целевая аудитория: Прочее

Автор: Соколова Елизавета Валерьевна

Дата: 28.10.2021

Номер свидетельства: 589908

Похожие файлы

object(ArrayObject)#865 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(177) "Компьютерное моделирование и вычислительный эксперимент как новый метод научного исследования"
    ["seo_title"] => string(80) "kompiuternoe_modelirovanie_i_vychislitelnyi_eksperiment_kak_novyi_metod_nauchn_1"
    ["file_id"] => string(6) "589909"
    ["category_seo"] => string(7) "prochee"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1635426357"
  }
}
object(ArrayObject)#887 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(237) "Информационные - коммуникационные технологии как инструмент повышения познавательной активности обучающихся на уроках физики. "
    ["seo_title"] => string(142) "informatsionnyie-kommunikatsionnyie-tiekhnologhii-kak-instrumient-povyshieniia-poznavatiel-noi-aktivnosti-obuchaiushchikhsia-na-urokakh-fiziki"
    ["file_id"] => string(6) "135352"
    ["category_seo"] => string(6) "fizika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1416910353"
  }
}
object(ArrayObject)#865 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(77) "Моделирование,формализация,визуализация "
    ["seo_title"] => string(45) "modielirovaniie-formalizatsiia-vizualizatsiia"
    ["file_id"] => string(6) "101006"
    ["category_seo"] => string(11) "informatika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1402402990"
  }
}
object(ArrayObject)#887 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(196) "Исследовательская тема: "Использование инновационных технологий при преподавании физики в средней школе" "
    ["seo_title"] => string(116) "issliedovatiel-skaia-tiema-ispol-zovaniie-innovatsionnykh-tiekhnologhii-pri-priepodavanii-fiziki-v-sriedniei-shkolie"
    ["file_id"] => string(6) "161301"
    ["category_seo"] => string(6) "fizika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1422199945"
  }
}
object(ArrayObject)#865 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(145) "Пути активизации познавательной деятельности на уроках физики в условиях  УКП "
    ["seo_title"] => string(84) "puti-aktivizatsii-poznavatiel-noi-dieiatiel-nosti-na-urokakh-fiziki-v-usloviiakh-ukp"
    ["file_id"] => string(6) "105897"
    ["category_seo"] => string(6) "fizika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1402922435"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства