Просмотр содержимого документа
«Коммутативные операции»
Министерство образования, науки и молодёжной политики
Краснодарского края
Государственное бюджетное профессиональное образовательное учреждение Краснодарского края
«ЕЙСКИЙ ПОЛИПРОФИЛЬНЫЙ КОЛЛЕДЖ»
ПРОВЕРИЛ
________/_________/
«___»_________20___г.
Коммутативные операции
Подготовила:
студентка Ш-21
Кононенко Анастасия
Ейск, 2019
Операция называется коммутативной, если ее применение к парам a, b и b, a всегда дает один и тот же результат. Ниже мы увидим, что если для коммутативной операции существует одна из обратных операций, то существует и другая и обе они совпадают. Для некоммутативной операции это уже неверно.
Коммутативная операция — бинарная операция, обладающая свойством коммутативности(позднелат. commutativus — «меняющийся»), то есть свойством переместительности.
В частности, если групповая операция является коммутативной, то группа называется абелевой. Если операция умножения в кольце является коммутативной, то кольцо называется коммутативным.
Термин «коммутативность» ввёл в 1814 году французский математик Франсуа Жозеф Сервуа.
Примерами коммутативных операций могут служить сложение и умножение натуральных чисел, поскольку для любых натуральных чисел х и у выполняются равенства х + у = у + х, х · у = у · х. Эти равенства справедливы не только для натуральных чисел, но и для любых действительных чисел, следовательно, на множестве действительных чисел сложение и умножение тоже коммутативны.
Существуют алгебраические операции, не обладающие свойством коммутативности. Так, не является коммутативным вычитание целых чисел: существуют целые числа х и у, для которых х - у ≠ у - х. Например, 12-7≠7-12.