Просмотр содержимого документа
«Вписанные в окружность и описанные около окружности четырехугольники. »
10 КЛАССГеометрия
Тема: Вписанные в окружность и описанные около окружности четырехугольники.
Цели и задачи:
1.Уметь выражать сторону и площадь правильного многоугольника через радиусы вписанной и описанной окружностей
2.Развитие познавательных навыков и интересов у учеников.
3. Формирование навыков и умений и применение их в повседневной жизни.
Ход урока:
1) Организационные моменты \ Повторение.
2) Новый материал.
Вписанный четырехугольник — четырехугольник, все вершины которого лежат на одной окружности. Очевидно, эта окружность будет называться описанной вокруг четырехугольника.
Описанный четырехугольник — такой, что все его стороны касаются одной окружности. В этом случае окружность вписана в четырехугольник.
На рисунке — вписанные и описанные четырехугольники и их свойства.
Посмотрим, как эти свойства применяются в решении задач ЕГЭ.
3.Закрепление.
. Два угла вписанного в окружность четырехугольника равны и . Найдите больший из оставшихся углов. Ответ дайте в градусах.
Сумма противоположных углов вписанного четырехугольника равна . Пусть угол равен . Тогда напротив него лежит угол в градусов. Если угол равен , то угол равен .
Ответ: .
. Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как . Найдите большую сторону этого четырехугольника, если известно, что его периметр равен .
Пусть сторона равна , равна , а . По свойству описанного четырехугольника, суммы противоположных сторон равны, и значит,
Получается, что равна . Тогда периметр четырехугольника равен . Мы получаем, что , а большая сторона равна .
Ответ: .
. Около окружности описана трапеция, периметр которой равен . Найдите ее среднюю линию.
Мы помним, что средняя линия трапеции равна полусумме оснований. Пусть основания трапеции равны и , а боковые стороны — и . По свойству описанного четырехугольника, , и значит, периметр равен . Получаем, что , а средняя линия равна .
Еще раз повторим свойства вписанного и описанного четырехугольника.
Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны .
Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин его противоположных сторон равны.