Для успешного решения задач по тригонометрии необходимо уверенное владение многочисленными формулами. Тригонометрические формулы надо помнить. Но это не значит, что их надо заучивать все наизусть, главное запоминать не сами формулы, а алгоритмы их вывода. Любую тригонометрическую формулу можно довольно быстро получить, если твердо знать определения и основные свойства функций sin, cos, tg, ctg,соотношение sin2+ cos2=1 и формулы сложения. Каждый раз выводить нужную формулу, например, для преобразования тригонометрического уравнения время уйдет достаточно много. Поэтому круг формул, которые необходимо знать, должен быть достаточно широким.
Разучивание тригонометрических формул в школе не для того чтобы вы всю оставшуюся жизнь вычисляли синусы и косинусы, а для того чтобы ваш мозг приобрел способность работать. “Дороги не те знания, которые отлагаются в мозгу, как жир; дороги те, которые превращаются в умственные мышцы” писал Г. Спесер, английский философ и социолог.
Так вот, давайте сегодня на уроке работать активно, внимательно, будем поглощать знания с большим желанием, ведь они вам пригодятся.
Тема нашего урока: “Тригонометрические формулы”- последний урок по данной теме, следующий – контрольная работа.
2.Блиц-опрос (по формулам в форме математического диктанта).
Проверка проводится на уроке с выставлением оценок.
“5” - 12; “4” - 10 – 11; “3” - 7 – 9; “2” - 0 – 6
3. Закрепление знаний и умений.
4. Самостоятельная работа обучающего характера в форме теста, с последующей проверкой на уроке.
5. Проверка самостоятельной работы (проверка теста проводится на уроке, оценки выставляются выборочно).
6. Это интересно. Зарождение тригонометрии относится к глубокой древности. Еще задолго до новой эры вавилонские ученые умели предсказывать солнечные и лунные затмения. Это позволяет сделать вывод о том, что им были известны простейшие сведения из тригонометрии. Само название “тригонометрия” греческого происхождения, обозначающее “измерение треугольников”. Одним из основоположников тригонометрии считается древнегреческий астроном Гиппарх, живший во 2 веке до нашей эры. Гиппарх является автором первых тригонометрических таблиц.
Тригонометрия в ладони
Значения синусов и косинусов углов “находятся” на вашей ладони. Протяните руку и разведите как можно сильнее пальцы, так как показано на слайде. Сейчас мы измерим углы между вашими пальцами. (Возьмем два прямоугольных треугольника с углами 30°и 45° и приложим вершину нужного угла к бугру Луны на ладони. Бугор Луны находится на пересечении продолжений мизинца и большого пальца. Одну сторону угла совмещаем с мизинцем, а другую сторону - с одним из остальных пальцев)
Смотрите, я прикладываю угол в 30°; оказывается, это угол
- между мизинцем и безымянным пальцем;
- между мизинцем и средним пальцем - 45°;
- между мизинцем и указательным пальцем - 60°;
- между мизинцем и большим пальцем - 90°;
И это у всех людей без исключения.
Если пальцы считать лучами, исходящими из бугра Луны на ладони, то, если совместить (сжать) пальцы с мизинцем, угол между лучами будет равен 0°, то есть можно считать, что направление мизинца соответствует началу отсчета углов, то есть 0°, а поэтому введем нумерацию пальцев:
№0 - Мизинец
№1 - Безымянный
№2 - Средний
№3 -Указательный
№4 - Большой
№0 Мизинец 0°
№1 Безымянный 30°
№2 Средний 45°
№3 Указательный 60°
№4 Большой 90°
n - номер пальца
Значения синуса и косинуса угла по “ладони” приведено в таблице.
Примечание. Для определения косинуса угла отсчет пальцев происходит от большого пальца руки. [6]