kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Составление квадратного трехчлена по его корням

Нажмите, чтобы узнать подробности

Тема: «Составление квадратного трехчлена по  его корням»

Цели урока: научить составлять квадратный трехчлена по  его корням.

Задачи урока:

Обучающая: повторить понятие квадратного трехчлена и его корней; формировать умение составлять квадратный трехчлена по  его корням.

Развивающая: развитие логического мышления, познавательных интересов.

Воспитательная: воспитание  организованности, дисциплинированности, аккуратности, усидчивости.

Тип урока: урок изучения нового материала и первичного закрепления

Методы и приемы: словесный, наглядный, практический.

Материально-техническое  обеспечение: дидактический материал.

План урока:                                                                                                                        

  1. Организационный момент
  2. Актуализация  знаний
  3. Первичное усвоение новой учебной информации
  4. Осознание и осмысление
  5. Закрепление
  6. Информация о домашнем задании
  7. Подведение итогов урока

Ход урока

І. Организационный момент

 - Здравствуйте ребята, тема сегодняшнего урока: «Составление квадратного трехчлена по  его корням».

Цели данного урока: научится составлять квадратный трехчлена по  его корням.

Приветствие, проверка готовности учащихся к уроку, сообщение темы и цели урока и требований к уроку. 

ІІ. Актуализация  знаний

 - Давайте вспомним пройденный материал

-  Разложите на множители выражение:

-  а) Х2- 9;       б) Х2 – 9Х;

-  Найдите корень уравнения:

-  а) Х2- 9 = 0;  б) Х2 – 9Х = 0;  в) Х2 – 6Х + 9 = 0

Ребята отвечают на вопросы учителя.

ІІІ. Первичное усвоение новой учебной информации 

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Составление квадратного трехчлена по его корням »

Класс: 8 «Б» Предмет: Алгебра Дата: _______

Урок № 64 Тема: «Составление квадратного трехчлена по его корням»

Цели урока: научить составлять квадратный трехчлена по его корням.

Задачи урока:

Обучающая: повторить понятие квадратного трехчлена и его корней; формировать умение составлять квадратный трехчлена по его корням.

Развивающая: развитие логического мышления, познавательных интересов.

Воспитательная: воспитание организованности, дисциплинированности, аккуратности, усидчивости.

Тип урока: урок изучения нового материала и первичного закрепления

Методы и приемы: словесный, наглядный, практический.

Материально-техническое обеспечение: дидактический материал.

План урока:

  1. Организационный момент

  2. Актуализация знаний

  3. Первичное усвоение новой учебной информации

  4. Осознание и осмысление

  5. Закрепление

  6. Информация о домашнем задании

  7. Подведение итогов урока

Ход урока

І. Организационный момент

- Здравствуйте ребята, тема сегодняшнего урока: «Составление квадратного трехчлена по его корням».

Цели данного урока: научится составлять квадратный трехчлена по его корням.

Приветствие, проверка готовности учащихся к уроку, сообщение темы и цели урока и требований к уроку. 

ІІ. Актуализация знаний

 - Давайте вспомним пройденный материал

  • Разложите на множители выражение:

  • а) Х2- 9; б) Х2 – 9Х;

  • Найдите корень уравнения:

  • а) Х2- 9 = 0; б) Х2 – 9Х = 0; в) Х2 – 6Х + 9 = 0

Ребята отвечают на вопросы учителя.

ІІІ. Первичное усвоение новой учебной информации

§  54 . Разложение  квадратного   трехчлена  на линейные множители

В этом параграфе мы рассмотрим следующий вопрос: в каком случае  квадратный  трехчлен  ax2  + bx + c можно представить в   виде   произведения

(a1x + b1) (a2x + b2)

двух линейных  относительно х множителей  с действительными коэффициентами     a1b1a2b2     (a1 =/=0, a2 =/=0) ?

1.  Предположим, что данный  квадратный   трехчлен  ax2  + bx + c  представим в виде

ax2  + bx + c  = (a1x + b1) (a2x + b2).                   (1)

Правая часть формулы (1) обращается в нуль при  х =  —  b1a1 и х = —  b2a2  (a1иa2 по условию не равны нулю). Но в таком случае числа  —  b1a1 и  —  b2a2  являются корнями уравнения

ax2  + bx + c = 0.

Следовательно, дискриминант  квадратного   трехчлена  ax2  + bx + c должен быть неотрицательным.

2.  Обратно,   предположим,   что   дискриминант  D = b2 — 4ас квадратного трехчлена ax2  + bx + c  неотрицателен.  Тогда этот  трехчлен  имеет действительные корни x1 и x2. Используя теорему Виета,  получаем:

ax2  + bx + c  = а (x2 + b/a х + c/a) = а [x2 — (x1 + x2х + x1x2] =

а [(x2— x1x ) — (x2x — x1x2)] = а [х (х — x1) — x2(х — x1) =

= a(х — x1)(х — x2).

Итак,

ax2  + bx + c = a(х — x1)(х — x2),                 (2)

где x1 и x2 — корни  трехчлена  ax2  + bx + c. Коэффициент а можно отнести к любому из двух линейных множителей,  например,

a(х — x1)(х — x2) = ( — ax1)(х — x2).

Но это означает, что в рассматриваемом случае  квадратный   трехчлен  ax2  + bx + c представим в виде произведения двух линейных множителей с действительными коэффициентами.

Объединяя результаты, полученные в пунктах 1 и 2, мы приходим к следующей теореме.

Теорема.  Квадратный   трехчлен  ax2  + bx + c тогда и тoлько тогда можно представить в виде произведения двух линейных множителей с действительными коэффициентами,

ax2  + bx + c = ( — ax1)(х — x2),

когда дискриминант этого  квадратного   трехчлена  неотрицателен (то есть когда этот  трехчлен  имеет действительные корни).

Пример 1.   Разложить на линейные множители 6x2 — х —1.

Корни этого  квадратного   трехчлена  равны x1 1/2  и x2 = — 1/3.

Поэтому по формуле (2)

6x2 — х —1 = 6 (х — 1/2)(х + 1/3) = (2х — 1) (3x + 1).

Пример 2.  Разложить на линейные множители x2 + х + 1. Дискриминант    этого     квадратного      трехчлена     отрицателен:

D = 12 — 4•1•1 = — 3

Поэтому данный   квадратный   трехчлен   на линейные множители с действительными  коэффициентами   не раскладывается.

Упражнения

Разложить   на   линейные   множители   следующие  выражения (№ 403 — 406):

403. 6x2 — 7х + 2.                  405. x2 — х + 1.

404.   2x2 — 7ах + 6а2.             406. x2 — 3ах + 2а2 — аb— b2.



Предположим, что нам нужно  составить  квадратное уравнение, корнями которого были бы числа x1 и x2. Очевидно, что в качестве искомого уравнения можно выбрать уравнение

a(х — x1)(х — x2) = 0,                      (1)

где а — любое отличное от нуля действительное число. С другой стороны, как было показано в § 54, каждое квадратное уравнение с корнями x1 и x2 можно записать в виде (1).

Таким образом, формула (1) полностью решает поставленную выше задачу. Из всех квадратных уравнений корни x1 и x2 имеют уравнения вида (1) и только, они.

ІV.Осознание и осмысление

Пример. Составить квадратное уравнение, корни которого равны  1  и — 2.

Ответ.   Корни 1 и —2 имеют все квадратные уравнения вида

а(х — 1)(х + 2) = 0,

или

ах2 + ах — 2а = 0,

где а — любое отличное от нуля действительное число. Например,   при   а = 1   получается   уравнение

х2 + х — 2 = 0.

V. Закрепление

Упражнения

1.  Составить квадратное уравнение, корнями которого были бы  числа:

а) 2 и — 3;    б) — 1 и — 5;      в) 1/4 и 1/6;    г) — 1/2 и — 1/3 .

2.  Составить квадратное уравнение с целыми коэффициентами так, чтобы его корни были равны:

а) — 1/5   и  2/3;    б) 4/7  и 5;    в) — 3/2  и  2/9;    г) — 3/10  и — 2/5.

3.   Составить квадратное уравнение с целыми  коэффициентами, корни которого равны 5/7 и — 1/2, а сумма всех коэффициентов равна 36.

Решение: (х-5/7)(х-1/2)=0 х2-17/14х+5/14=0 14х2-17х+5=0 14+17+5=36

4.  Могут ли  корнями  квадратного уравнения с натуральными коэффициентами   быть  числа 6/5 и — 1/7?

Решение: (х-6/5)(х+1/7)=0 35х2-37х-6=0 (да)

5.  Составить квадратное уравнение с целыми  коэффициентами, если известно, что один из его корней равен:

а) 2 + √3 ;       б) 3 —√2 

в) √3-5

Решение

Второй корень будет сопряжён первому, т. е. x1 = √3−5; x2 = −√3−5.
Ищем квадратное уравнение в виде x² + ax + b = 0,
тогда по теореме Виета a = −(x1+x2) = −2•(−5) = 10, b = x1•x2 = (−5)²−(√3)² = 22.
ОТВЕТ: x²+10x+22 = 0.

Решить №3,№5 на стр.97-98 проверь себя, дополнительно №242 (1,2).

VI.Информация о домашнем задании

№228, №234+ Повторить пройденную тему§12.

VII.Подведение итогов урока

Давайте теперь подведем итоги урока :

Учитель благодарит за урок и объявляет оценки.




Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: 8 класс.
Урок соответствует ФГОС

Скачать
Составление квадратного трехчлена по его корням

Автор: Бондаренко Ирина Казимировна

Дата: 15.02.2015

Номер свидетельства: 173305

Похожие файлы

object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(71) "Формула корней квадратного уравнения. "
    ["seo_title"] => string(42) "formula-korniei-kvadratnogho-uravnieniia-2"
    ["file_id"] => string(6) "163352"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1422465864"
  }
}
object(ArrayObject)#875 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(80) "Рабочая программа по алгебре для 7-9 классов "
    ["seo_title"] => string(51) "rabochaia-proghramma-po-alghiebrie-dlia-7-9-klassov"
    ["file_id"] => string(6) "228291"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1441214332"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1580 руб.
2260 руб.
1750 руб.
2500 руб.
1850 руб.
2640 руб.
1360 руб.
1940 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства