kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Конспект урока на тему: «Угол между векторами. Скалярное произведение векторов».

Нажмите, чтобы узнать подробности

цель урока: научить учащихся применять формулы нахождения скалярного произведения при решении задач.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Конспект урока на тему: «Угол между векторами. Скалярное произведение векторов».»


Конспект урока на тему:

«Угол между векторами. Скалярное произведение векторов».

Цель урока: Научить учащихся применять формулы нахождения скалярного произведения при решении задач.

Задачи урока:

Образовательные: дать представление о скалярном произведении векторов; рассмотреть как находится длина вектора, рассмотреть случаи когда знак скалярного произведения зависит от значения косинуса угла между векторами, закрепление материала на примерах.

Воспитательные: воспитание активности, самостоятельности, ответственности;

Развивающие: формирование мировоззрения учащихся, развитие всех составляющих мышления.



План урока:

  1. Организационный момент (2 мин.).

  2. Изучение нового материала (15 мин.).

  3. Закрепление нового материала (18 мин.).

  4. Итог урока (5 мин.).

  5. Выставление оценок, домашнее задание. (5 мин.).



Ход урока.

1. Учитель:

- Здравствуйте, садитесь. Откройте тетради, запишите сегодняшнее число и тему урока «Угол между векторами. Скалярное произведение векторов».

2. Учитель:

-Запишите определение:

Углом между ненулевыми векторами  называется угол, образованный при откладывании этих векторов от одной точки.

Обозначение: 

- Замечание:

Если векторы сонаправлены, то угол между ними равен 0, а если векторы противоположно направлены, то угол между ними равен 180.

- Введем определение скалярного произведения:

Определение:


*Длина вектора (модуль) определяется следующим образом:

Данные  формулы необходимо запомнить!!!

Покажем угол между векторами:

Понятно, что он может изменяться в пределах от 0 до 1800 (или в радианах от 0 до Пи).

Можем сделать некоторые выводы о знаке скалярного произведения. Длины векторов имеют положительное значение, это очевидно. Значит знак скалярного произведения зависит от значения косинуса угла между векторами.

Возможны случаи:

1. Если угол между векторами острый (от 00 до 900), то косинус угла будет иметь положительное значение.

2. Если угол между векторами тупой (от 900 до 1800), то косинус угла будет иметь отрицательное значение.

*При нуле градусов, то есть когда векторы имеют одинаковое направление, косинус равен единице и соответственно результат будет положительным.

При 180о, то есть когда векторы имеют противоположные направления, косинус равен минус единице,  и соответственно результат будет отрицательным.

При 90о, то есть когда векторы перпендикулярны друг другу, косинус равен нулю, а значит и СП равно нулю. Этот факт (следствие, вывод) используется при решение многих задач, где речь идёт о взаимном расположении векторов, в том числе и в задачах входящих в открытый банк заданий по математике.

Сформулируем утверждение: скалярное произведение равно нулю тогда и только тогда, когда данные векторы лежат на перпендикулярных прямых.

Итак, формулы СП векторов:

Если известны координаты векторов или координаты точек их начал и концов, то всегда сможем найти угол между векторами:



Свойства: (на доске)

1. Для любых  верно:

2. Для любых  и любого действительного числа  верно:

3. Для любых  и  верно:

3. Закрепим новый материал:

Задача№1

Дано:

Задача№2

Дано:

Задача№3

Дано:

Задача№4

- Скалярное произведение определяется также через координаты. Запишите координатный вид скалярного произведения.

Пусть даны векторы:

Тогда их скалярное произведение определяется формулой:

(сумма произведений абсцисс векторов и ординат векторов)

так как:

и 



то через координаты формула нахождения косинуса угла между векторами выглядит следующим образом:

Если векторы взаимно перпендикулярны, то их скалярное произведение равно 0

Решим следующую задачу:

Найти скалярное произведение векторов:

4. - Сегодня на уроке мы познакомились с понятием скалярного произведения векторов. Что является скалярным произведением векторов?

- По каким формулам можно найти косинус угла между векторами?

- Как находится абсолютная величина вектора?

5. Итог урока. Выставление оценок.





Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: 11 класс.
Урок соответствует ФГОС

Скачать
Конспект урока на тему: «Угол между векторами. Скалярное произведение векторов».

Автор: Яковых Оксана Владимировна

Дата: 22.11.2017

Номер свидетельства: 440222

Похожие файлы

object(ArrayObject)#873 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(100) "Угол между векторами.скалярное произведение векторов."
    ["seo_title"] => string(62) "ughol_miezhdu_viektorami_skaliarnoie_proizviedieniie_viektorov"
    ["file_id"] => string(6) "406288"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1491242583"
  }
}
object(ArrayObject)#895 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(105) "Конспект урока на тему "Скалярное произведение векторов" "
    ["seo_title"] => string(62) "konspiekt-uroka-na-tiemu-skaliarnoie-proizviedieniie-viektorov"
    ["file_id"] => string(6) "156863"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1421500415"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства