kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Научный проект по теме : " Использование средств ИКТ в процессе подготовки учащихся к математическим олимпиадам"

Нажмите, чтобы узнать подробности

~~ВВЕДЕНИЕ

1.Актуальность исследования. Лицейское образование предполагает ориентацию не только на усвоение определенных знаний, но в большей мере  на развитие личности, ее познавательных и созидательных способностей в соответствии с особенностями (интеллектуальными, психологическими, физическими) каждого ученика.
Эффективным средством развития, выявления способностей и интересов учащихся с разными типами одаренности являются предметные олимпиады.
Математические олимпиады школьников  имеют большую историю и традицию.
Значительно продвинулось развитие олимпиад благодаря использованию новых информационных и коммуникационных технологий (ИКТ). Так, широкую известность в школах  Казахстана через Интернет получили Международный конкурс-игра «Кенгуру. Математика для всех» (М.И. Башмаков), «Акбота», дистанционная олимпиада «Эйдос» (А.В. Хуторской), Московский интеллектуальный марафон, турниры Архимеда, математические бои, турниры городов и др.
Недостаточно разработан вопрос участия и подготовки к олимпиадам школьников младшего и среднего звена, особенно среди «необычных» детей, хотя в последнее время наблюдается тенденция снижения возраста участников.
Как показывают результаты проведенных исследований, интерес к математическим олимпиадам, конкурсам, кружковым занятиям у учащихся 5 классов очень высок.
Вместе с тем, существующие на данный момент олимпиады, конкурсы для пятиклассников проходят разрозненно, нет единого комплексного подхода к их подготовке и проведению.
Отметим также, что в настоящее время учителя испытывают нехватку современной методической литературы, предназначенной для работы со способными учащимися  5 классов по организации и проведению кружковых занятий, олимпиад по математике.
Учителя осуществляют подготовку учащихся к олимпиадам, опираясь на свой собственный опыт, взгляды, т.е., как правило, работа ведется на эмпирическом уровне без должной теоретической основы. Одним из наиболее сложных моментов в обучении остается вопрос: как научить учащихся решать нестандартные задачи?
Между тем обучение решению нестандартных задач  с учетом психологических и физических особенностей одаренных детей на раннем этапе при подготовке к олимпиадам могло бы развивать математические способности, интерес к предмету у учащихся и развивать гибкое, вариативное мышление ребенка, что необходимо как для последующего выстраивания индивидуальных образовательных траекторий, так и для адаптации одаренных детей в  современном мир.
Проблемам подготовки к олимпиадам по математике были посвящены исследования Г.И. Алексеевой, И.С. Петракова, Г.А. Тонояна. В данных работах практически не затрагиваются вопросы подготовки школьников 5 классов к олимпиадам. А работы по подготовке к олимпиадам одаренных учащихся и вовсе отсутствуют.
Проблема исследования обусловлена противоречием между потенциальными возможностями олимпиад по математике в области развития познавательного интереса и способностей учащихся 5 классов и недостаточным уровнем научно-методических разработок и, как следствие, недостаточной реализацией этих возможностей в данных классах.
Актуальность исследования определяется потребностью совершенствования методики подготовки учащихся 5 классов к участию в олимпиадах по математике в аспекте развития познавательного интереса и способностей учащихся с различными типами одаренности к математике.
Объект исследования — процесс подготовки учащихся 5 классов с различными типами одаренности  к участию в математических олимпиадах.
Предметом исследования являются методические подходы к подготовке учащихся с высокой мотивацией (на примере 5 классов) к участию в математических олимпиадах в аспекте развития познавательного интереса, мышления и способностей к математике.
Цель исследования - теоретическое обоснование и разработка методических подходов к подготовке одаренных учащихся 5 классов и учащихся с высокой мотивацией к участию в математических олимпиадах.
Гипотеза исследования: повышение уровня подготовки к олимпиадам у учащихся 5 классов с высокой мотивацией и одаренных учащихся к математике будет достигнуто, если ориентировать эту подготовку на обучение решению нестандартных задач на уроках по индивидуальным содержательным и методическим траекториям, а также на использование информационных и коммуникационных технологий (ИКТ).
Исходя из цели исследования, были поставлены следующие задачи:
1. Провести анализ современного состояния олимпиадного движения, а также теоретических и методических исследований по рассматриваемой проблеме.
2. Выявить психолого-педагогические особенности развития познавательного интереса и способностей у школьников 5 классов, в том числе у одаренных детей.
3. Определить основные направления и требования к совершенствованию подготовки учащихся 5 классов к математическим олимпиадам.
4. Разработать методические подходы к обучению решению нестандартных задач на уроках в 5 классах, в том числе с использованием средств ИКТ.
5. Провести экспериментальную проверку эффективности разработанной методики подготовки к математическим олимпиадам учащихся 5 классов школы- лицея «Достар» в 2012-13 и последующих учебных годах.
Методологической основой исследования послужили важнейшие теоретические положения об особенностях формирования познавательного интереса у младших школьников и подростков (Л.С. Выготский, Н.С. Лейтес, Н.В. Метельский, Г.И. Щукина, Д.Б. Эльконин  и др.), теория поэтапного формирования умственных действий (П.Я. Гальперин ), теория обучения решению нестандартных математических задач (Б.В. Гнеденко , Г.В. Дорофеев , Ю.М. Колягин , Г.Г. Левитас , Д. Пойа и др.), теоретические положения в области психологии способностей (В.А. Крутецкий , И.С. Якиманская  и др.), теоретические подходы к разработке программ обучения математике (М.И. Башмаков , Г.В. Дорофеев , Ю.М. Колягин , Г.Л. Луканкин , А.Г. Мордкович  и др.), теория и методика информатизации образования, в том числе использования информационных и коммуникационных технологий (ИКТ) в процессе обучения (С.А. Бешенков , С.С. Кравцов , А.А. Кузнецов, О.Б. Медведев, И.В. Роберт и др).
Для решения поставленных задач применять методы: теоретические (анализ психолого-педагогической и учебно-методической литературы по проблеме исследования, анализ проводимых олимпиад и работ кружков по математике, обобщение опыта работы учителей в подготовке учащихся к олимпиадам, анализ практики использования средств ИКТ в процессе подготовки и проведения олимпиад); эмпирические (педагогическое наблюдение, беседы, анкетирование); опытное обучение 
Этапы исследования.
Первый этап . Изучалась и анализировалась психолого-педагогическая и учебно-методическая литература по рассматриваемой проблеме, изучался опыт учителей по подготовке учащихся к олимпиадам разного уровня, вырабатывались новые подходы к ведению занятий, разрабатывались новые формы проведения уроков( 2010-11уч.г. ).
Второй этап . Разработка теоретических основ исследования и доведение отдельных положений до методического решения. С учетом выявленных на первом этапе затруднений в практику лицея в 2011-12 уч.г. внедряется методика, рассчитанная на подготовку к олимпиадам одаренных учащихся 5 классов и учащихся с высокой мотивацией.
Новизна исследования состоит в следующем:
• определены основные направления и разработаны методические требования к совершенствованию подготовки учащихся 5 классов к олимпиадам по математике, ориентированные на развитие познавательного интереса и способностей к предмету;
• предложен авторский подход в обучении учащихся решению нестандартных задач;
• определены формы и методы использования средств ИКТ в процессе подготовки и проведения олимпиад.
Практическая значимость заключается в разработке:
• методических рекомендаций по проведению уроков (и их фрагментов) по обучению решению нестандартных задач, которые могут быть использованы учителями при подготовке учащихся 5 классов к олимпиадам (в лекциях для учителей и студентов);
• адаптированных по форме и содержанию рабочих материалов для 5 классов,
• методических рекомендаций по подготовке и проведению олимпиад с использованием средств ИКТ.

Заключение.
В заключение считаем необходимым сформулировать рекомендации учителям, работающим над подготовкой к олимпиадам одаренных детей (при условии предварительной психологической диагностики по выявлению одаренности по данному предмету) :

1. необходимо усиливать теоретическую подготовку одаренных детей,
2. при подготовке уделять особое внимание геометрическим нестандартным задачам, способу доказательства от противного и смешанным задачам (комбинаторика и теория чисел и др.),
3. усилить изучение  внепрограммного материала: теория чисел и логические задачи с шахматами),
4. обращать внимание на специфику решения задач с параметрами и на интеграцию геометрии и комбинаторики.
5. создавать индивидуальные траектории подготовки к олимпиадам (в том числе с использованием ИКТ),
6. готовить задачи с измененным условием (нестандартность по фабуле),
7. развивать  мышление одаренных детей в направлении культуры алгоритмизации и пространственного мышления, т.к. такой тип мышления довольно часто  не характерен для одаренных детей.
8. формировать навыки исследования,
9. использовать склонность одаренных детей к самообучению.

 

 

 

 

 

 

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Научный проект по теме : " Использование средств ИКТ в процессе подготовки учащихся к математическим олимпиадам" »

Международная школа- лицей «Достар»







НАУЧНЫЙ ПРОЕКТ

по теме:

«Использование средств ИКТ

в процессе подготовки

одаренных учащихся к математическим олимпиадам».

Учитель математики

высшего уровня квалификации

высшей категории

Фирсова Е.В.













Содержание

Введение……………………………………………………………….стр. 3

1.Актуальность исследования

2.Объем исследования

3. Предмет исследования

4.Цель исследования

5.Гипотиза исследования

6. Новизна исследования

7.Практическая значимость

§1. Историческая справка о проведении математических

олимпиад в Казахстане…………………………. .стр. 8

§2. Основные психолого- педагогические и методические

особенности создания системы подготовки учащихся, одаренных по предмету, к олимпиадам по математике различных уровней……….стр.14

§ 3. Методические рекомендации по использованию

нестандартных задач уроках как основа подготовки

к олимпиадам ……………………………………………………….......стр.17

§4. Использование средств ИКТ в процессе подготовки

одаренных учащихся к математическим олимпиадам………………..стр. 30

Заключение………………………………………………………………стр.31

Приложение 1……………………………………………………………стр.32

Приложение 2……………………………………………………………стр.34







ВВЕДЕНИЕ


1.Актуальность исследования. Лицейское образование предполагает ориентацию не только на усвоение определенных знаний, но в большей мере на развитие личности, ее познавательных и созидательных способностей в соответствии с особенностями (интеллектуальными, психологическими, физическими) каждого ученика.
Эффективным средством развития, выявления способностей и интересов учащихся с разными типами одаренности являются предметные олимпиады.
Математические олимпиады школьников имеют большую историю и традицию.

Значительно продвинулось развитие олимпиад благодаря использованию новых информационных и коммуникационных технологий (ИКТ). Так, широкую известность в школах Казахстана через Интернет получили Международный конкурс-игра «Кенгуру. Математика для всех» (М.И. Башмаков), «Акбота», дистанционная олимпиада «Эйдос» (А.В. Хуторской), Московский интеллектуальный марафон, турниры Архимеда, математические бои, турниры городов и др.
Недостаточно разработан вопрос участия и подготовки к олимпиадам школьников младшего и среднего звена, особенно среди «необычных» детей, хотя в последнее время наблюдается тенденция снижения возраста участников.

Как показывают результаты проведенных исследований, интерес к математическим олимпиадам, конкурсам, кружковым занятиям у учащихся 5 классов очень высок.

Вместе с тем, существующие на данный момент олимпиады, конкурсы для пятиклассников проходят разрозненно, нет единого комплексного подхода к их подготовке и проведению.
Отметим также, что в настоящее время учителя испытывают нехватку современной методической литературы, предназначенной для работы со способными учащимися 5 классов по организации и проведению кружковых занятий, олимпиад по математике.
Учителя осуществляют подготовку учащихся к олимпиадам, опираясь на свой собственный опыт, взгляды, т.е., как правило, работа ведется на эмпирическом уровне без должной теоретической основы. Одним из наиболее сложных моментов в обучении остается вопрос: как научить учащихся решать нестандартные задачи?
Между тем обучение решению нестандартных задач с учетом психологических и физических особенностей одаренных детей на раннем этапе при подготовке к олимпиадам могло бы развивать математические способности, интерес к предмету у учащихся и развивать гибкое, вариативное мышление ребенка, что необходимо как для последующего выстраивания индивидуальных образовательных траекторий, так и для адаптации одаренных детей в современном мир.
Проблемам подготовки к олимпиадам по математике были посвящены исследования Г.И. Алексеевой, И.С. Петракова, Г.А. Тонояна. В данных работах практически не затрагиваются вопросы подготовки школьников 5 классов к олимпиадам. А работы по подготовке к олимпиадам одаренных учащихся и вовсе отсутствуют.
Проблема исследования обусловлена противоречием между потенциальными возможностями олимпиад по математике в области развития познавательного интереса и способностей учащихся 5 классов и недостаточным уровнем научно-методических разработок и, как следствие, недостаточной реализацией этих возможностей в данных классах.
Актуальность исследования определяется потребностью совершенствования методики подготовки учащихся 5 классов к участию в олимпиадах по математике в аспекте развития познавательного интереса и способностей учащихся с различными типами одаренности к математике.
Объект исследования — процесс подготовки учащихся 5 классов с различными типами одаренности к участию в математических олимпиадах.
Предметом исследования являются методические подходы к подготовке учащихся с высокой мотивацией (на примере 5 классов) к участию в математических олимпиадах в аспекте развития познавательного интереса, мышления и способностей к математике.
Цель исследования - теоретическое обоснование и разработка методических подходов к подготовке одаренных учащихся 5 классов и учащихся с высокой мотивацией к участию в математических олимпиадах.
Гипотеза исследования: повышение уровня подготовки к олимпиадам у учащихся 5 классов с высокой мотивацией и одаренных учащихся к математике будет достигнуто, если ориентировать эту подготовку на обучение решению нестандартных задач на уроках по индивидуальным содержательным и методическим траекториям, а также на использование информационных и коммуникационных технологий (ИКТ).
Исходя из цели исследования, были поставлены следующие задачи:

1. Провести анализ современного состояния олимпиадного движения, а также теоретических и методических исследований по рассматриваемой проблеме.
2. Выявить психолого-педагогические особенности развития познавательного интереса и способностей у школьников 5 классов, в том числе у одаренных детей.
3. Определить основные направления и требования к совершенствованию подготовки учащихся 5 классов к математическим олимпиадам.
4. Разработать методические подходы к обучению решению нестандартных задач на уроках в 5 классах, в том числе с использованием средств ИКТ.
5. Провести экспериментальную проверку эффективности разработанной методики подготовки к математическим олимпиадам учащихся 5 классов школы- лицея «Достар» в 2012-13 и последующих учебных годах.
Методологической основой исследования послужили важнейшие теоретические положения об особенностях формирования познавательного интереса у младших школьников и подростков (Л.С. Выготский, Н.С. Лейтес, Н.В. Метельский, Г.И. Щукина, Д.Б. Эльконин и др.), теория поэтапного формирования умственных действий (П.Я. Гальперин ), теория обучения решению нестандартных математических задач (Б.В. Гнеденко , Г.В. Дорофеев , Ю.М. Колягин , Г.Г. Левитас , Д. Пойа и др.), теоретические положения в области психологии способностей (В.А. Крутецкий , И.С. Якиманская и др.), теоретические подходы к разработке программ обучения математике (М.И. Башмаков , Г.В. Дорофеев , Ю.М. Колягин , Г.Л. Луканкин , А.Г. Мордкович и др.), теория и методика информатизации образования, в том числе использования информационных и коммуникационных технологий (ИКТ) в процессе обучения (С.А. Бешенков , С.С. Кравцов , А.А. Кузнецов, О.Б. Медведев, И.В. Роберт и др).

Для решения поставленных задач применять методы: теоретические (анализ психолого-педагогической и учебно-методической литературы по проблеме исследования, анализ проводимых олимпиад и работ кружков по математике, обобщение опыта работы учителей в подготовке учащихся к олимпиадам, анализ практики использования средств ИКТ в процессе подготовки и проведения олимпиад); эмпирические (педагогическое наблюдение, беседы, анкетирование); опытное обучение

Этапы исследования.
Первый этап . Изучалась и анализировалась психолого-педагогическая и учебно-методическая литература по рассматриваемой проблеме, изучался опыт учителей по подготовке учащихся к олимпиадам разного уровня, вырабатывались новые подходы к ведению занятий, разрабатывались новые формы проведения уроков( 2010-11уч.г. ).
Второй этап . Разработка теоретических основ исследования и доведение отдельных положений до методического решения. С учетом выявленных на первом этапе затруднений в практику лицея в 2011-12 уч.г. внедряется методика, рассчитанная на подготовку к олимпиадам одаренных учащихся 5 классов и учащихся с высокой мотивацией.
Новизна исследования состоит в следующем:
• определены основные направления и разработаны методические требования к совершенствованию подготовки учащихся 5 классов к олимпиадам по математике, ориентированные на развитие познавательного интереса и способностей к предмету;
• предложен авторский подход в обучении учащихся решению нестандартных задач;
• определены формы и методы использования средств ИКТ в процессе подготовки и проведения олимпиад.
Практическая значимость заключается в разработке:
• методических рекомендаций по проведению уроков (и их фрагментов) по обучению решению нестандартных задач, которые могут быть использованы учителями при подготовке учащихся 5 классов к олимпиадам (в лекциях для учителей и студентов);
• адаптированных по форме и содержанию рабочих материалов для 5 классов,

• методических рекомендаций по подготовке и проведению олимпиад с использованием средств ИКТ.

§1. Историческая справка о проведении математических

олимпиад в Казахстане………………………….
После 90-х гг., кроме проводимой всероссийской олимпиады школьников, в жизнь школ входят новые формы олимпиад, конкурсов, турниров, организаторами которых являются высшие учебные заведения, институты, центры математического образования и т.д. Большую роль в распространении данных конкурсов сыграли публикации в научно-популярных и научно-методических журналах «Квант» и «Математика в школе», пособиях для внеклассной работы. Например, стали популярны
такие соревнования, как «Турниры городов», «Интеллектуальные марафоны», «Математические бои» и др. Также широкую известность таким конкурсам, особенно к началу XXI века, принесли стремительно развивающиеся новые информационные и коммуникационные технологии. В частности в российском секторе Интернет большую популярность приобрела конкурс-игра «Кенгуру. Математика для всех», которая проводится Институтом продуктивного образования (г. Санкт-Петербург), руководимым академиком РАО М.И. Башмаковым. Сайт «Конкурса-игры «Кенгуру» расположен по адресу http://vvww.kenguru.sp.ru//. Этот конкурс имеет массовый охват учащихся со 2 по 11 класс, проводится по всей стране и привлекает своей доступностью. Он стал доступным способом общения на разном уровне - от школьного класса до национального региона. В начале 80-х годов П. Холлоран, профессор математики из Сиднея, решил организовать новый тип игры-конкурса для австралийских школьников: вопросник с выбором предложенных ответов, проверяемый компьютером. Тысячи школьников могли участвовать в конкурсе одновременно. Успех австралийского национального математического конкурса был огромен. В 1991 г. два французских математика решили провести эту игру во Франции, назвав ее «Кенгуру» в честь своих австралийских друзей. Первая игра собрала 120 000 учеников колледжей, а позже конкурс охватил также школьников и лицеистов. 21 европейская страна объединилась под эгидой ассоциации «Кенгуру без границ». Эта международная ассоциация объединяет участников из многих стран. Целью ассоциации является широкое распространение общей математической культуры и, в частности организация конкурса-игры, проводимой в один и тот же день во всех странах-участницах. Например, в 2003 г. конкурс проводился 20 марта. В «Кенгуру - 2003» участвовало около двух миллионов учащихся из 28 стран, почти 560 000 школьников из Казахстана.
Ежегодно количество участников конкурса по Казахстану.
Конкурс проводится непосредственно в школе. Участникам вручаются заранее полученные от оргкомитета задания, содержащие 30 задач, где каждая задача сопровождается пятью вариантами ответа. Писать полные решения не требуется, следует лишь на специальном бланке для ответов указать найденный номер для ответа к каждой задаче. На всю работу дается 1 час 15 минут. Затем листы с ответами и данными
участника сдаются и направляются в оргкомитет (г. Санкт-Петербург) для проверки и обработки. 30 задач конкурса разделены на 3 части:
• 10 наиболее легких задач, оцениваемых в 3 балла каждая. Трехбалльные задачи подбираются так, чтобы каждый участник конкурса мог решить хотя бы несколько из них. Эти задачи не требуют специальной подготовки, они по силам каждому, кто внимательно прочитает условие.
• 10 - потруднее, оцениваемых в 4 балла. Эти задачи рассчитаны на то, чтобы школьные отличники и «хорошисты» могли проявить себя, эти задачи заметно сложнее трехбалльных и часто приближены к школьной программе.
• 10 - наиболее трудных, за решение которых дается 5 баллов. Эти задачи составляются так, чтобы даже наиболее подготовленным ребятам было о чем подумать. Для их решения надо проявить и смекалку, и умение рассуждать, и наблюдательность.
Таким образом, участник конкурса может максимально набрать 120 баллов. После проверки (примерно через месяц) каждая школа, принявшая участие в конкурсе, получает ведомость с указанием полученных баллов и места каждого ученика в общем списке. При этом результаты выступления учащихся подводятся отдельно по школе, городу, республике, России. Связь организаторов со школами-участниками, в большинстве своем осуществляется через Интернет.
Конкурс-игра «Кенгуру - математика для всех» способствует популяризации математики и повышению интереса к ней среди учащихся. При подборе задач для этого конкурса организаторы придерживаются двух принципов: решение задач должно доставлять удовольствие; «Кенгуру» -хоть и не очень жесткое, но все-таки соревнование, поэтому побеждать должны наиболее способные и подготовленные. Большое преимущество данного конкурса - оперативная связь между организаторами и участниками.

С 2012-2013 учебного года математический конкурс "Кенгуру" расширяется. Кроме традиционной весенней олимпиады, в декабре будет проводиться конкурс для 2-6 классов (так что ученики смогут поучаствовать в "Кенгуру" дважды).
Одной из причин создания дополнительного "зимнего" Кенгуру - в том, что всё чаще учителя и родители обращают внимание на разницу в подготовке 3-го и 4-го классов, соревнующихся в одном уровне "Малыш", а также 5-го и 6-го классов, входящих в уровень "Школьник". Однако, поскольку конкурс проводится по международным правилам, в которых установлены фиксированные уровни сложности, готовить отдельные задания для разных классов было невозможно.
Поэтому в зимнем Кенгуру каждый класс будет решать собственные задачи и оцениваться отдельно. Для 2-го класса задание состоит из 15-ти задач, для 3го и 4го - из 24-х задач, а для 5-го и 6-го - из 30-ти.
Также успехом пользуется дистанционная эвристическая олимпиада «Эйдос» [http://www.eidos.ru/olymp/]. Организаторы: А.В. Хуторской и Центр «Эйдос». В отличие от традиционных олимпиад на эвристических олимпиадах ученики соревнуются в способности сочинять, изобретать, открывать новое, предлагать собственные версии, конструировать модели, создавать закономерности. Для того чтобы стать участником олимпиады необходимо иметь электронную почту и выход в Интернет для участия и ознакомления с материалами предыдущих олимпиад. Данная олимпиада может быть предметной или метапредметной, т.е. выходящей за рамки отдельных дисциплин. Дистанционная олимпиада позволяет решать многие образовательные задачи: развитие умений исследовать объекты и генерировать идеи в конкретной образовательной области, выражать мысли в письменной и графической формах, оперировать информацией по теме с помощью компьютерных средств. Как правило, в эвристической олимпиаде 4-5 заданий, которые называются номинациями. Единых ответов на эвристические задания не существует. Участником олимпиады может стать любой ученик или группа учеников с 1 по 11 классы. Данная олимпиада предназначена для любого школьника с любым уровнем подготовки.

§2. Основные особенности системы подготовки учащихся, одаренных по предмету, к олимпиадам по математике различных уровней.

Развитие учащихся во многом зависит от той деятельности, которую они выполняют в процессе обучения. Если деятельность репродуктивная – ученик получает готовую информацию, воспринимает ее, понимает, запоминает, а затем воспроизводит. Цель такой деятельности – формирование знаний, умений и навыков.

Если деятельность продуктивная – происходит активная работа мышления, связанная с логическими операциями анализа, синтеза, сравнения, аналогии, обобщения. Задумываясь над основанием собственных умений (рефлексируя), ребенок овладевает обобщенными способами действий, лежащими в основе этого умения, и тем самым приобретает знания, которые может конкретизировать при решении целого класса частных задач. В общем случае появлению конкретных знаний предшествует овладение методом получения этих знаний.

Опираясь на психологические особенности пятиклассников - а среди лицеистов 5 класса есть и 8,9- летние дети, - выделим те (Д.Пойа), на которые мы опирались при создании системы подготовки к олимпиадам. Это следующие особенности:

  1. до 6-7 лет ребенок, оперируя предметами, овладевает окружающим миром через конкретные действия; в этом возрасте большинство детей не может выполнять обратные операции и не владеет принципами сохранения количества и величины предмета;

  2. в период обучения в начальной школе (до 10-11 лет) от действий с предметами ребенок постепенно переходит к выполнению операций с образами (символами) этих предметов; ребенок в этом возрасте в состоянии выполнять операции не непосредственно с помощью проб и ошибок, а сначала мысленно; может совершать действия в обратной последовательности; дети этого возраста способны упорядочивать имеющиеся предметы, овладевают принципом сохранения, однако все операции конкретны и ограничены его жизненным опытом;

  3. примерно к 12 годам ребенок переходит в последнюю стадию умственного развития (стадию «формальных операций»), когда становиться возможным выполнение мыслительных операций, уже не опирающихся на личный конкретный опыт; ребенок овладевает абстрактно-понятийными способами мышления и к 14-15 годам у него формируется логика взрослого человека.

  4. Помимо данных особенностей развития, одаренных учащихся часто характеризуют: свернутость и вариативность мышления, долговременная память, рассеянное внимание, психические отклонения, неадекватная самооценка и эгоизм.

Проанализировав данные психолого-физиологические положения и имеющиеся в распоряжении педагогов пособия по работе с одаренными детьми по математике и подготовке их к олимпиадам, мы сделали вывод, что обычно их содержание организовано следующим образом: это сборники заданий для учащихся повышенной сложности и на смекалку с прилагаемыми ответами или, в лучшем случае, коротким решением.

При этом основным методом обучения детей остается репродуктивный: запоминание способа решения заданной конкретной задачи и тренинг (повторение способа решения при многократном выполнении однотипных заданий). При таком методе следующим этапом работы учителя является предложение детям карточек с набором заданий разных типов с целью идентификации ребенком по внешним признакам известных типов заданий и извлечения из памяти заученных способов их решения.

Но “развитая память еще не есть образованность, точная информация еще не есть знания” (У. Глассер). За счет усвоения готовых способов решения разнообразных частных задач невозможно получить развитие способности к самостоятельному нахождению способов решения. Поэтому учащийся, столкнувшись с задачей нового типа или более повышенной сложности, часто терпит неудачу при ее решении…однако одаренный ребенок не отказывается от решения сразу, как обычный школьник, а пытается решить ее. В случае неуспеха возникают критические ситуации, выход из которых возможен в одной из следующих стратегий: преодоление (конструктивная стратегия), либо приспособление или отторжение (неконструктивные стратегии поведения).

В предлагаемой нами методике работы с одаренными детьми по математике главной задачей является раскрытие принципов действия, решение задачи не ради точного ответа, а ради способа его получения, ради логических рассуждений (зачастую свернутых) на пути к нему. Для осуществления технологического процесса при данном подходе к обучению необходима строгая логика построения учебного содержания.















§ 3. Методические рекомендации по использованию нестандартных
задач уроках как основа подготовки к олимпиадам .

Для конструирования содержания по подготовке к олимпиадам в 5 классе нами отбирались задания, которые, во-первых, не могли быть использованы на уроках в рамках учебного курса математики:

а) задания, выходящие за рамки изучаемых понятий по годам обучения, но возможность нахождения способов их решения прогнозируется исходя из зоны ближайшего развития одаренных детей;

б) задания, требующие нестандартного подхода к их решению;

во-вторых (и это главное), могли быть систематизированы по общему способу их решения и представлены в виде модели (знаковой, геометрической, диаграммы, алгоритма действий и т.д.)

Речь идет о моделировании как особом общем способе познания и важнейшем учебном действии, являющимся составным элементом учебной деятельности. С одной стороны, моделирование выступает целью обучения, а с другой – средством самостоятельного решения учащимися конкретных математических задач. Учащиеся в процессе особо организованного обучения овладевают действием моделирования, нарабатывая его как способ или даже метод продвижения в системе понятий.

Основные принципы такой организации работы с одаренными детьми:

- В ходе использования моделирования нецелесообразно предлагать детям модель в готовом виде.

Модель всегда есть результат некоторого этапа исследования. Существенные признаки и связи, зафиксированные в модели, становятся наглядными для учащихся тогда, когда эти признаки, связи были выделены самими детьми в их собственном действии, т.е. когда они сами участвовали в создании моделей. В противном случае учащиеся не видят их в модели, и она не становится для них наглядной.

- Для того, чтобы учащиеся вышли на новую модель, учитель сначала предлагает им задачу, которую они уже легко решают, используя известный способ и модель. Создав ситуацию успеха, можно предложить детям задачу, которая внешне похожа на предыдущую, но её решение старым способ либо приводит к неудаче, либо нерационально. Ребенок обнаруживает дефицит собственных знаний и понимает, что в такой ситуации, когда у него возникают трудности и известная модель не позволяет ему быстро решить задачу, нужно конструировать новый вид модели. Следовательно, у детей возникает необходимость, что является основой для устойчивой мотивации дальнейшей деятельности.

- Построение модели учащимися обеспечивает наглядность существенных свойств, скрытых связей и отношений, все остальные свойства, несущественные в данном случае, отбрасываются. Часто это не под силу одному ученику, поэтому такую работу целесообразно проводить в группах. Внутри группы дети сами организуют свои действия: либо сначала обсуждают способы решения, а затем каждый самостоятельно пытается выполнить задание, либо сначала каждый пробует выполнить задание, а потом сравнивает свой способ решения со способами других детей. В качестве доказательства правильности решения задачи используется все та же модель. В данном случае она является средством для обоснования точки зрения.

Разобравшись и проанализировав то многообразие текстовых задач, которое есть в школьном курсе математики (включая и нестандартные задачи), можно классифицировать модели, которыми может пользоваться учащийся. Для различных исследований в математике разработаны методы теории графов, теории вероятностей и математической статистики, математической логики и комбинаторики, аксиоматический метод, методы исследования элементарных функций, решения уравнений, доказательства утверждений, построения геометрических фигур, измерения величин и т.д. В начальной и 5 классе школе учащиеся вполне могут моделировать комбинаторные и логические задачи, задачи, решаемые с помощью кругов Эйлера, графов, уравнений, задачи на измерение величин.

Учителю математики, занимающемуся подготовкой учащихся к олимпиадам, так же необходимо обеспечить работу с задачами следующих разделов (разумеется, адаптированными под 5 класс):

  1. Ребусы, криптограммы.

  2. Текстовые задачи.

  3. Теория чисел.

  4. Планиметрия.

  5. Стереометрия.

  6. Уравнения, неравенства и системы.

  7. Доказательства числовых неравенств.

  8. Задачи на взвешивание.

  9. Логические задачи.

  10. Комбинаторные задачи.

Из каждого раздела не стоит рассматривать случайную выборку задач, нужно выделить основные темы, методы, способы. Так, например, в разделе «Теория чисел» в 5 классе можно определить следующие основные темы:

  1. Восстановление знаков действий.

  2. Восстановление цифр натуральных чисел.

  3. Числовые ребусы.

  4. Четные и нечетные числа.

  5. Признаки делимости.

  6. Простые и составные числа.

  7. Деление с остатком.

  8. Перестановка и зачеркивание цифр в натуральном числе.

  9. Последние цифры натурального числа.

  10. Степень с натуральным показателем.

  11. Системы счисления.

  12. Уравнения в целых числах.

  13. Неравенства в целых числах.

При непосредственной подготовке учащихся к математическим конкурсам и олимпиадам необходимо акцентировать внимание учащихся на следующих моментах:

- в качестве одной из задач конкурса любого уровня может быть задача, в условии которой фигурирует год проведения олимпиады,

- в конкурсных задачах отсутствуют задачи с длительными выкладками,

- в задачах на доказательство требуется полное обоснование,

- если в условии требуется указать все возможные способы решения, то от полноты количества указанных способов зависит и количество полученных баллов,

- если в условии требуется ответить на вопрос «Можно ли…?», то для ответа достаточно привести один положительный пример, а для того, чтобы дать ответ «нельзя». Необходимо рассмотреть все возможные случаи, обобщая их в доказательство.

§4. Использование средств ИКТ в процессе подготовки одаренных учащихся к математическим олимпиадам.


Основной целью использования информационно-компьютерных технологий при подготовке к олимпиадам одаренных детей в 5 классе становится цель обеспечения индивидуализации обучения (наряду с целями экономии времени и повышения доли наглядности в обучении, приводимыми в некоторых электронных пособиях).

В МО преподавателей математики ГОУ лицея № 1524 идет разработка методов обучения с помощью информационных и компьютерных технологий и фрагментов электронных уроков , ориентированных на одаренных детей, а также выявления позитивных и негативных последствий, которые оказывает информатизация на обучение и развитие одаренных детей. В планировании по математике 5 класса предусмотрены 6 уроков с ИКТ, однако их может быть больше (на усмотрение учителя).

Одним из очень интересных факторов, создающих предпосылки для успешного обучения одаренных детей с использованием средств ИКТ и Интернета является то, что таких детей характеризует высокая самостоятельность в процессе познания. Они широко используют «саморегуляционные стратегии» обучения и легко переносят их на новые задачи (в том числе задачи старших классов, вплоть до 10-11 класса) , что позволяет опережать программный материал и создаёт предпосылки для новых форм индивидуализации в обучении. Эти дети могут учиться автономно, в том числе и при поддержке учителя.

Также разработка специальных компьютерных обучающих программ, расширяющих возможности реализации новых способов и форм самообучения и саморазвития, а также компьютеризация контроля знаний способствуют реализации принципа индивидуализации обучения, столь необходимого для одаренных учащихся, в том числе при подготовке к олимпиадам.




Заключение.


В заключение считаем необходимым сформулировать рекомендации учителям, работающим над подготовкой к олимпиадам одаренных детей (при условии предварительной психологической диагностики по выявлению одаренности по данному предмету) :


1. необходимо усиливать теоретическую подготовку одаренных детей,

2. при подготовке уделять особое внимание геометрическим нестандартным задачам, способу доказательства от противного и смешанным задачам (комбинаторика и теория чисел и др.),

3. усилить изучение внепрограммного материала: теория чисел и логические задачи с шахматами),

4. обращать внимание на специфику решения задач с параметрами и на интеграцию геометрии и комбинаторики.

5. создавать индивидуальные траектории подготовки к олимпиадам (в том числе с использованием ИКТ),

6. готовить задачи с измененным условием (нестандартность по фабуле),

7. развивать мышление одаренных детей в направлении культуры алгоритмизации и пространственного мышления, т.к. такой тип мышления довольно часто не характерен для одаренных детей.

8. формировать навыки исследования,

9. использовать склонность одаренных детей к самообучению.








20




Получите в подарок сайт учителя

Предмет: Математика

Категория: Прочее

Целевая аудитория: 5 класс.
Урок соответствует ФГОС

Автор: Фирсова Елена Васильевна

Дата: 27.07.2014

Номер свидетельства: 110701

Похожие файлы

object(ArrayObject)#863 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(121) "Программа внеурочной деятельности   "Любознательная информатика" "
    ["seo_title"] => string(69) "proghramma-vnieurochnoi-dieiatiel-nosti-liuboznatiel-naia-informatika"
    ["file_id"] => string(6) "114972"
    ["category_seo"] => string(11) "informatika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1411753559"
  }
}
object(ArrayObject)#885 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(19) "Решение  С1"
    ["seo_title"] => string(14) "rieshieniie-s1"
    ["file_id"] => string(6) "264859"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1449775254"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства