Математические методы решения экономических задач с использованием информационных технологий
Математические методы решения экономических задач с использованием информационных технологий
это проект по разделу математики"Линейное программирование" по теме решение экономических задач симплекс-методом. В проекте показан разбор задачи симплекс-методом. Это громоздко и затратно в вычислениях. Ту же самую работу можно выполнить с использованием ПК. Задача разобрана дастаточно подробно. В конце работы предлагается пешить прикладную задачу. Выбор способа решения не ограниччен.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Пермский политехнический колледж имени Н.Г. Славянова
Проектная работа
Математические методы решения экономических задач с использованием информационных технологий
для студентов специальности
«Экономика и бухгалтерский учет»
Пермь 2015
Содержание
Паспорт проекта
3
Введение
5
Этапы работы
6
Постановка проблемы
6
Организация деятельности
6
Описание
7
Представление результатов и их оценка
14
Литература
15
Паспорт проекта
Образовательное учреждение
ГБОУ СПО «Пермский политехнический колледж им. Н.Г. Славянова»
Вид работы
Проектная работа
Название работы
Математические методы решения экономических задач с использованием информационных технологий для студентов специальности «Экономика и бухгалтерский учет»
Авторы работы
студенты 2 курса специальности «Экономика и бухгалтерский учет»
Научный руководитель
Мелюхина Людмила Васильевна – преподаватель дисциплины «Элементы высшей математика»
способствовать развитию мыслительных операций: аналогия, систематизация, обобщение, наблюдение;
формировать умения применять математические знания, знания по информатике в практических задачах;
способствовать поддержанию интереса к предметам математики, информатики;
формировать умения трудиться;
помочь осознать роль знаний в жизни и обучении;
стимулировать самостоятельность;
работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями.
Задачи
познакомить с различными способами расчёта
(симплекс-методом);
использовать прикладные программные средства;
выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество;
осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач
Объект
Задачи линейного программирования
Предмет
Решение конкретной экономической задачи с точки зрения математики и информатики в свете формирования компетенций и навыков, которые могут пригодиться в обучении и в профессиональной деятельности
Вид проекта
по методу: практический
по содержанию: межпредметный
по продолжительности: долгосрочный (октябрь-декабрь)
Введение
Многие задачи, с которыми приходится иметь дело в повседневной практике, являются многовариантными. Среди множества возможных вариантов в условиях рыночных отношений приходится отыскивать наилучшее в некотором смысле ограничениях, налагаемых на природные, экономические и технологические возможности. В связи с этим возникла необходимость применять для анализа и синтеза экономической ситуации математические методы и современную вычислительную технику. Такие методы объединяются под общим названием – математическое программирование. Один из разделов математического программирования – линейное программирование.
Начало линейному программированию было положено в 1939г. Советским математиком-экономистом Л. В. Конторовичем. Появление этой работы открыло новый этап в применении математики в экономике. Спустя десять лет американский математик Дж. Данциг разработал эффективный метод решения данного класса задач – симплекс-метод.
В своем проекте мы хотим показать возможность вести расчет аналитически и автоматизировано. Зачастую математические расчеты трудоемки. На уроках информатики эти расчеты выполняются намного проще и быстрее с использованием специализированного программного обеспечения. Подобный расчёт выполняется и при решении профессиональных задач. Привлечение средств информатики даёт быстроту, точность расчёта и наглядность.
Проект носит прикладной характер (практико-ориентированный).
Этапы работы
Постановка проблемы
Какой математический аппарат предложить для решения задач линейного программирования?
Как эффективнее выполнить расчет?
Итогом работы будет сравнение результатов аналитического и автоматизированного расчётов.
Гипотеза: предположим, что решать задачи линейного программирования можно симплекс-методом, а можно и более эффективно – с использованием специализированного программного обеспечения.
Организация деятельности
Предполагается, проводить работу 2-мя группами.
1-я группа – математики-экономисты
виды работ
подобрать и изучить литературу по данной теме
проконсультироваться с преподавателями по данным вопросам
составить математическую модель задачи (опорный план)
2-я группа – информатики
виды работ
подобрать и изучить литературу по данной теме
проконсультироваться с преподавателями по данным вопросам
выбрать программное обеспечение для работы с числовой информацией
составить информационную модель задачи
Описание
Блок МАТЕМАТИКА
Линейное программирование занимается разработкой методов решения задач на экстремум линейной функции нескольких переменных при линейных ограничениях, налагаемых на переменные.
Линейную функцию, экстремальное значение которой нужно найти в условиях экономических возможностей, называют целевой функцией (линейная форма). Экономические возможности формализуются в виде системы линейных ограничений. Все это составляет математическую модель задачи. Среди многочисленных задач линейного программирования – задачи об использовании сырья, о составлении рациона, транспортная задача и др.
Задача об использовании сырья
Допустим, предприятие выпускает продукцию двух видов: и используя сырье четырех видов . Запасы каждого вида сырья соответственно равны . Известно, что расход -го вида сырья для производства единицы -го вида продукции равен ,). От реализации единицы -го вида продукции предприятие получает доход, равный .
Условие задачи можно представить в виде следующей таблицы:
Запас сырья
Доход
ЗАДАЧА
Требуется составить такой план выпуска продукции видов и , чтобы при имеющихся запасах сырья обеспечить предприятию максимальный доход.
Математическая модель задачи для следующих числовых данных:
Запас сырья
2
3
19
2
1
13
0
3
15
3
0
18
Доход
7
5
Обозначим через планируемый объем производства продукции соответственно видов и . Для выполнения такого плана потребуется сырья вида в количестве , но его расход ограничен запасом . Таким образом, возникает ограничение .
Аналогичные ограничения накладывают и запасы других видов сырья. В результате приходим к системе линейных неравенств:
Суммарный доход предприятия от реализации продукции
Приведем задачу к виду:
– дополнительные переменные.
Составим таблицу из коэффициентов системы:
Таблица 1
Базисные переменные
Свободные
члены
19
2
3
1
0
0
0
19/2
13
2
1
0
1
0
0
13/2
15
0
3
0
0
1
0
-
18
3
0
0
0
0
1
6
0
7
5
0
0
0
0
Таблица 2
Базисные переменные
Свободные
члены
7
0
3
1
0
0
-2/3
7/3
1
0
1
0
1
0
-2/3
1
15
0
3
0
0
1
0
5
6
1
0
0
0
0
-1/3
-
-42
0
5
0
0
0
-7/3
Таблица 3
Базисные переменные
Свободные
члены
4
0
0
1
-3
0
4/3
3
1
0
1
0
1
0
-2/3
-
12
0
0
0
-3
1
2
6
6
1
0
0
0
0
1/3
18
-47
0
0
0
-5
0
1
Таблица 4
Базисные переменные
Свободные
члены
3
0
0
3/4
-9/4
0
1
3
0
1
1/2
-1/2
0
0
6
0
0
-3/2
3/2
1
0
5
1
0
-1/4
3/4
0
0
-50
0
0
-3/4
-11/4
0
0
В последней строке таблицы 4 нет положительных элементов, значит она содержит оптимальное решение задачи.
Вывод:
Предприятие, производящее продукцию должно выпускать 5 единиц продукции и 3 единицы продукции , чтобы получить максимальную прибыль 50 у.е.
Блок ИНФОРМАТИКА
Программа для обработки числовой информации MS Excel позволяет решать экономические задачи с помощью надстройки Поиск решения.
Алгоритм вызова надстройки
Файл – Параметры Excel – надстройки – управление (надстройки Excel) – перейти – Поиск решения
Расположение в меню
Данные – Поиск решения
Вернёмся к экономической задаче. На первом этапе необходимо составить экономико-математическую задачи.
Целевая функция - это выражение, которое необходимо оптимизировать (в нашей задаче – максимизировать)
Система линейных неравенств является ограничениями
Экономико-математическую модель задачи перекладываем в MS Excel и Применяем надстройку Поиск решения для получения результата
Алгоритм решения задачи:
Составить таблицу данных
Заполнить целевую функцию с помощью математической функции СУММПРОИЗВ(массив1;массив2)
Предприятие получит максимальную прибыль 50 у.е., выпуская 5 единиц продукции и 3 единицы продукции . При этом ресурсы S1 и S2 использованы полностью, а по сырью S3 и S4 будет экономия.
Прикладная задача:
Для откорма животных используется три вида комбикорма: А , В, С. каждому животному в сутки требуется не менее 800 г. жиров, 700 г. белков и 900 г. углеводов. Содержание в 1кг. каждого вида комбикорма жиров, белков и углеводов (граммы) приведены в таблице:
Содержание в 1 кг
Комбикорм
А
В
С
Жиры
320
240
300
Белки
170
130
110
углеводы
380
440
450
Стоимость 1 кг
31
23
20
Сколько килограммов каждого вида комбикорма нужно каждому животному, чтобы полученная смесь имела минимальную стоимость?
Математическая модель задачи:
– количество комбикорма А, В, С. стоимость смеси:
Ограничения на количество ингредиентов:
Решить задачу удобным методом.
Представление результатов и их оценка
Этап работы
Содержание этапа
Деятельность студента
Деятельность преподавателя
Презентация
Открытый отчёт участников проекта о проделанной работе
Каждый участник проекта индивидуально защищает свою задачу с мультимедийной демонстрацией:
формулировка задачи
решение задачи (подробное решение сдаёт на отдельном листке)
Преподаватели слушают и задают вопросы в ходе защиты
Оценка результатов работы
Анализ достижения поставленной цели
Оценка индивидуального вклада каждого члена группы в реализацию проекта в целом. Анализ достигнутых результатов, успехов, причин неудач.
Рефлексия
Участвует в коллективном анализе и оценке результатов проекта.
Оценивает свою деятельность по руководству проектом.
Литература
Пахомова Н.Ю. Метод учебного проекта в образовательном учреждении: Пособие для учителей и студентов пед. вузов, - М: АРКТИ, 2005г.
Чечель И.Д Исследовательский проекты в практике обучения. «Практика административной работы в школе», 6/2003 г.
Богомолов Н.В. практические задания по математике. М: Высшая школа 1990