kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Свойства степени с натуральным показателем 7 класс

Нажмите, чтобы узнать подробности

Формы работы: индивидуальная, фронтальная, парная.

Продолжительность урока: 45 минут.

Методы обучения: словесный, наглядный, практический, проблемный.

Оборудование: наглядная презентация учебного материала (Приложение 1); карточки красного и зеленого цвета для игры «Молчанка», карточка с дифференцированными заданиями «Пара чисел», карточка с копиркой, плакат « Угадай фамилию ученого математика», карточки с формулами свойств степени (при отсутствии презентации), зачетный  лист.

Цели урока:

  • Общеобразовательные:
    • обеспечить повторение, обобщение и систематизацию знаний по теме;
    • создать условия контроля (взаимоконтроля)  усвоения знаний и умений;
  • Развивающие:
    • способствовать формированию умений применять приемы обобщения, сравнения, выделения главного, переноса знаний в новую ситуацию;
    • развитие математического кругозора, мышления, речи, внимания и памяти.
  • Воспитательные:
    • содействовать воспитанию интереса к математике, активности, организованности; воспитывать умение взаимо- и самоконтроля своей деятельности;
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Свойства степени с натуральным показателем 7 класс »

1 свойство При умножении разных степеней с одинаковыми основаниями основание степеней оставляется прежним, а показатели складываются: a m      a n  =  a m  +  n .

1 свойство

При умножении разных степеней с одинаковыми основаниями основание степеней оставляется

прежним, а показатели складываются:

a m      a n  =  a m  +  n .

a 3      a 4  = a ⋅ a ⋅ a ⏟ 3 раза size 12{ { size 11{a cdot a cdot a}} underbrace { size 8{3``"раза"} } } {} VkNMTVRGAQAxAAAAAAAAAAEAGwAAAAAAAAAAAAAAAAABAAAAAQAAAAEAAAABAAAAAX4EAAD/ AwAAQAAAAJYAAQACAAAACQCLAAEAAgAAAP//gQABABAAAAAAAAAAAAAAAH0EAAD+AwAAlQAB AAQAAAAAAAAAlgABAAIAAAAJAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJv bWFuIE5vOSBMAAAAAAAAgwEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAAB AAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAAGoAAACNAQAAAQBhwQAA AAAA//8BAGEAjAABAAAAAACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wA AAAAAACDAQAA//8AAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwAB AAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAaAAAACQEAAI0BAAABAAAAxSLfAAAAAAD//wEA xSKMAAEAAAAAAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBM AAAAAAAAgwEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcA AQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAAMIBAACNAQAAAQBhwQAAAAAA//8BAGEA jAABAAAAAACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACDAQAA //8AAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD///// AIYAAQAEAAAAAAAAAHIAAgAaAAAAYQIAAI0BAAABAAAAxSLfAAAAAAD//wEAxSKMAAEAAAAA AIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAAgwEA AAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA//// /wCGAAEABAAAAAAAAAByAAIAFwAAABoDAACNAQAAAQBhwQAAAAAA//8BAGEAjAABAAAAAACL AAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAADIDAAB5AgAA//8AAAAABQAA AAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAA AAAAAHIAAgAaAAAAhAAAAPcBAAABAAAA3yNjAwAAAAD//wEA3yOMAAEAAAAAAIsAAQACAAAA HwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAAGQEAAAAAAwAAAAUA AAAAAAAA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA/////wCGAAEABAAA AAAAAAByAAIAFwAAAJ8AAAC5AwAAAQAzjQAAAAAA//8BADMAjAABAAAAAACLAAEAAgAAAB8A igABAEQAAAADAD4AAAASAE5pbWJ1cyBSb21hbiBObzkgTAAAAAAAABkBAAAAAAMAAAAFAAAA AAAAAP8DAAAAAAAAAAAA/wMAAAAAAIgAAQACAAAAAQCHAAEABQAAAP////8AhgABAAQAAAAA AAAAcgACACQAAACnAQAAuQMAAAgA0YDQsNC30LDsAQAAAAD//wQAQAQwBDcEMASMAAEAAAAA AJUAAQAEAAAAAAAAAJYAAQACAAAACQCMAAEAAAAAAA==  a ⋅ a ⋅ a ⋅ a ⏟ 4 раза size 12{ { size 11{a cdot a cdot a cdot a}} underbrace { size 8{4``"раза"} } } {} VkNMTVRGAQAxAAAAAAAAAAEAGwAAAAAAAAAAAAAAAAABAAAAAQAAAAEAAAABAAAAAdIFAAD/ AwAATgAAAJYAAQACAAAACQCLAAEAAgAAAP//gQABABAAAAAAAAAAAAAAANEFAAD+AwAAlQAB AAQAAAAAAAAAlgABAAIAAAAJAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJv bWFuIE5vOSBMAAAAAAAAgwEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAAB AAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAAGoAAACNAQAAAQBhwQAA AAAA//8BAGEAjAABAAAAAACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wA AAAAAACDAQAA//8AAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwAB AAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAaAAAACQEAAI0BAAABAAAAxSLfAAAAAAD//wEA xSKMAAEAAAAAAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBM AAAAAAAAgwEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcA AQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAAMIBAACNAQAAAQBhwQAAAAAA//8BAGEA jAABAAAAAACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACDAQAA //8AAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD///// AIYAAQAEAAAAAAAAAHIAAgAaAAAAYQIAAI0BAAABAAAAxSLfAAAAAAD//wEAxSKMAAEAAAAA AIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAAgwEA AAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA//// /wCGAAEABAAAAAAAAAByAAIAFwAAABoDAACNAQAAAQBhwQAAAAAA//8BAGEAjAABAAAAAACL AAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACDAQAA//8AAAAABQAA AAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAA AAAAAHIAAgAaAAAAuQMAAI0BAAABAAAAxSLfAAAAAAD//wEAxSKMAAEAAAAAAIsAAQACAAAA HwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAAgwEAAAAAAwAAAAUA AAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA/////wCGAAEABAAA AAAAAAByAAIAFwAAAHIEAACNAQAAAQBhwQAAAAAA//8BAGEAjAABAAAAAACLAAEAAgAAAB8A igABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAHwEAAB5AgAA//8AAAAABQAAAAAAAAD/AwAA AAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAa AAAAagAAAPcBAAABAAAA3yPBBAAAAAD//wEA3yOMAAEAAAAAAIsAAQACAAAAHwCKAAEARAAA AAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAAGQEAAAAAAwAAAAUAAAAAAAAA/wMA AAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIA FwAAAFgBAAC5AwAAAQA0jQAAAAAA//8BADQAjAABAAAAAACLAAEAAgAAAB8AigABAEQAAAAD AD4AAAASAE5pbWJ1cyBSb21hbiBObzkgTAAAAAAAABkBAAAAAAMAAAAFAAAAAAAAAP8DAAAA AAAAAAAA/wMAAAAAAIgAAQACAAAAAQCHAAEABQAAAP////8AhgABAAQAAAAAAAAAcgACACQA AABhAgAAuQMAAAgA0YDQsNC30LDsAQAAAAD//wQAQAQwBDcEMASMAAEAAAAAAJUAAQAEAAAA AAAAAJYAAQACAAAACQCMAAEAAAAAAA== = a ⋅ a ⋅ . . . ⋅ a ⏟ 3 + 4 = 7 раз size 12{ { size 11{a cdot a cdot "." "." "." cdot a}} underbrace { size 8{3`+`4`=`7``"раз"} } } {} VkNMTVRGAQAxAAAAAAAAAAEAGwAAAAAAAAAAAAAAAAABAAAAAQAAAAEAAAABAAAAATgHAAAD BAAAeAAAAJYAAQACAAAACQCLAAEAAgAAAP//gQABABAAAAAAAAAAAAAAADcHAAACBAAAlQAB AAQAAAAAAAAAlgABAAIAAAAJAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJv bWFuIE5vOSBMAAAAAAAAgwEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAAB AAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAANQAAACNAQAAAQBhwQAA AAAA//8BAGEAjAABAAAAAACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wA AAAAAACDAQAA//8AAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwAB AAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAaAAAAcgEAAI0BAAABAAAAxSLfAAAAAAD//wEA xSKMAAEAAAAAAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBM AAAAAAAAgwEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcA AQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAACwCAACNAQAAAQBhwQAAAAAA//8BAGEA jAABAAAAAACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACDAQAA //8AAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD///// AIYAAQAEAAAAAAAAAHIAAgAaAAAAygIAAI0BAAABAAAAxSLfAAAAAAD//wEAxSKMAAEAAAAA AIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAAgwEA AAAAAwAAAAUAAAAAAAAA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA//// /wCGAAEABAAAAAAAAAByAAIAFwAAAIQDAACNAQAAAQAuYQAAAAAA//8BAC4AjAABAAAAAACL AAEAAgAAAB8AigABAEQAAAADAD4AAAASAE5pbWJ1cyBSb21hbiBObzkgTAAAAAAAAIMBAAAA AAMAAAAFAAAAAAAAAP8DAAAAAAAAAAAA/wMAAAAAAIgAAQACAAAAAQCHAAEABQAAAP////8A hgABAAQAAAAAAAAAcgACABcAAAAIBAAAjQEAAAEALmEAAAAAAP//AQAuAIwAAQAAAAAAiwAB AAIAAAAfAIoAAQBEAAAAAwA+AAAAEgBOaW1idXMgUm9tYW4gTm85IEwAAAAAAACDAQAAAAAD AAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYA AQAEAAAAAAAAAHIAAgAXAAAAjAQAAI0BAAABAC5hAAAAAAD//wEALgCMAAEAAAAAAIsAAQAC AAAAHwCKAAEAPAAAAAMANgAAAAoAT3BlblN5bWJvbAAAAAAAAIMBAAD//wAAAAAFAAAAAAAA AP8DAAAAAAAAAAAA/wMAAAAAAIgAAQACAAAAAQCHAAEABQAAAP////8AhgABAAQAAAAAAAAA cgACABoAAADBBAAAjQEAAAEAAADFIt8AAAAAAP//AQDFIowAAQAAAAAAiwABAAIAAAAfAIoA AQBEAAAAAwA+AAAAEgBOaW1idXMgUm9tYW4gTm85IEwAAAAAAACDAQAAAAADAAAABQAAAAAA AgD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAA AHIAAgAXAAAAegUAAI0BAAABAGHBAAAAAAD//wEAYQCMAAEAAAAAAIsAAQACAAAAHwCKAAEA PAAAAAMANgAAAAoAT3BlblN5bWJvbAAADgUAAHkCAAD//wAAAAAFAAAAAAAAAP8DAAAAAAAA AAAA/wMAAAAAAIgAAQACAAAAAQCHAAEABQAAAP////8AhgABAAQAAAAAAAAAcgACABoAAADU AAAA9wEAAAEAAADfI10FAAAAAP//AQDfI4wAAQAAAAAAiwABAAIAAAAfAIoAAQBEAAAAAwA+ AAAAEgBOaW1idXMgUm9tYW4gTm85IEwAAAAAAAAZAQAAAAADAAAABQAAAAAAAAD/AwAAAAAA AAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAXAAAA agAAALkDAAABADONAAAAAAD//wEAMwCMAAEAAAAAAIsAAQACAAAAHwCKAAEAPAAAAAMANgAA AAoAT3BlblN5bWJvbAAAAAAAABkBAAD//wAAAAAFAAAAAAAAAP8DAAAAAAAAAAAA/wMAAAAA AIgAAQACAAAAAQCHAAEABQAAAP////8AhgABAAQAAAAAAAAAcgACABoAAAA+AQAAuQMAAAEA AAArAKQAAAAAAP//AQArAIwAAQAAAAAAiwABAAIAAAAfAIoAAQBEAAAAAwA+AAAAEgBOaW1i dXMgUm9tYW4gTm85IEwAAAAAAAAZAQAAAAADAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAA AACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAXAAAALAIAALkDAAAB ADSNAAAAAAD//wEANACMAAEAAAAAAIsAAQACAAAAHwCKAAEAPAAAAAMANgAAAAoAT3BlblN5 bWJvbAAAAAAAABkBAAD//wAAAAAFAAAAAAAAAP8DAAAAAAAAAAAA/wMAAAAAAIgAAQACAAAA AQCHAAEABQAAAP////8AhgABAAQAAAAAAAAAcgACABoAAAD/AgAAuQMAAAEAAAA9AN8AAAAA AP//AQA9AIwAAQAAAAAAiwABAAIAAAAfAIoAAQBEAAAAAwA+AAAAEgBOaW1idXMgUm9tYW4g Tm85IEwAAAAAAAAZAQAAAAADAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAA AAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAXAAAAIgQAALkDAAABADeNAAAAAAD/ /wEANwCMAAEAAAAAAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5v OSBMAAAAAAAAGQEAAAAAAwAAAAUAAAAAAAAA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAAB AIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAIAAAACsFAAC5AwAABgDRgNCw0LdvAQAA AAD//wMAQAQwBDcEjAABAAAAAACVAAEABAAAAAAAAACWAAEAAgAAAAkAjAABAAAAAAA=

2 свойство

При умножении одинаковых степеней с разными основаниями эти основания перемножаются, а

показатель степени остается прежним:

a n      b n  = ( ab ) n .

a 3    b 3  =  a    a    a    b    b    b  = 

=( a    b  ( a    b  ( a    b ) = ( ab ) 3

m , a ≠ 0." width="640"

3 свойство

При делении степени на степень с тем же основанием основание остается прежним, а показатели вычитаются:

a n : a m = a n – m , n m , a ≠ 0.

a 5 a 3 = a ⋅ a ⋅ a ⋅ a ⋅ a a ⋅ a ⋅ a size 12{ { { size 11{a rSup { size 8{5} } }} over { size 12{a rSup { size 8{3} } } } } = { { size 12{a cdot a cdot a cdot a cdot a} } over { size 12{a cdot a cdot a} } } } {} VkNMTVRGAQAxAAAAAAAAAAEAGwAAAAAAAAAAAAAAAAABAAAAAQAAAAEAAAABAAAAATsLAACz BAAAnwAAAJYAAQACAAAACQCLAAEAAgAAAP//gQABABAAAAAAAAAAAAAAADoLAACyBAAAlQAB AAQAAAAAAAAAlgABAAIAAAAJAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJv bWFuIE5vOSBMAAAAAAAAgwEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAAB AAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAAJ8AAADCAQAAAQBhwQAA AAAA//8BAGEAjAABAAAAAACLAAEAAgAAAB8AigABAEQAAAADAD4AAAASAE5pbWJ1cyBSb21h biBObzkgTAAAAAAAABkBAAAAAAMAAAAFAAAAAAAAAP8DAAAAAAAAAAAA/wMAAAAAAIgAAQAC AAAAAQCHAAEABQAAAP////8AhgABAAQAAAAAAAAAcgACABcAAAByAQAACQEAAAEANY0AAAAA AP//AQA1AIwAAQAAAAAAiwABAAIAAAAfAIUAAQAFAAAAAAAAAAGEAAEABQAAAAAAAAAAigAB ADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACmAQAA//8AAAAABQAAAAAAAAD/AwAAAAAA AAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAAAGcAAQAQAAAA hAAAAEYCAAAqAgAAWgIAAIwAAQAAAAAAiwABAAIAAAAfAIoAAQBEAAAAAwA+AAAAEgBOaW1i dXMgUm9tYW4gTm85IEwAAAAAAACmAQAAAAADAAAABQAAAAAAAgD/AwAAAAAAAAAAAP8DAAAA AACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAXAAAAnwAAAD0EAAAB AGHTAAAAAAD//wEAYQCMAAEAAAAAAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVz IFJvbWFuIE5vOSBMAAAAAAAAGQEAAAAAAwAAAAUAAAAAAAAA/wMAAAAAAAAAAAD/AwAAAAAA iAABAAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAAHIBAABpAwAAAQAz jQAAAAAA//8BADMAjAABAAAAAACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1i b2wAAAAAAACmAQAA//8AAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEA hwABAAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAaAAAARgIAAMoCAAABAAAAPQBPAQAAAAD/ /wEAPQCMAAEAAAAAAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5v OSBMAAAAAAAApgEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAAB AIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAANMDAADCAQAAAQBh0wAAAAAA//8B AGEAjAABAAAAAACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACm AQAA//8AAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/ ////AIYAAQAEAAAAAAAAAHIAAgAaAAAAcgQAAMIBAAABAAAAxSL0AAAAAAD//wEAxSKMAAEA AAAAAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAA pgEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA /////wCGAAEABAAAAAAAAAByAAIAFwAAAEUFAADCAQAAAQBh0wAAAAAA//8BAGEAjAABAAAA AACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACmAQAA//8AAAAA BQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAE AAAAAAAAAHIAAgAaAAAA5AUAAMIBAAABAAAAxSL0AAAAAAD//wEAxSKMAAEAAAAAAIsAAQAC AAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAApgEAAAAAAwAA AAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA/////wCGAAEA BAAAAAAAAAByAAIAFwAAALgGAADCAQAAAQBh0wAAAAAA//8BAGEAjAABAAAAAACLAAEAAgAA AB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACmAQAA//8AAAAABQAAAAAAAAD/ AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAAAHIA AgAaAAAAcQcAAMIBAAABAAAAxSL0AAAAAAD//wEAxSKMAAEAAAAAAIsAAQACAAAAHwCKAAEA RAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAApgEAAAAAAwAAAAUAAAAAAAIA /wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAABy AAIAFwAAACoIAADCAQAAAQBh0wAAAAAA//8BAGEAjAABAAAAAACLAAEAAgAAAB8AigABADwA AAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACmAQAA//8AAAAABQAAAAAAAAD/AwAAAAAAAAAA AP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAaAAAA4wgA AMIBAAABAAAAxSL0AAAAAAD//wEAxSKMAAEAAAAAAIsAAQACAAAAHwCKAAEARAAAAAMAPgAA ABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAApgEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAA AAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAAJ0J AADCAQAAAQBh0wAAAAAA//8BAGEAjAABAAAAAACLAAEAAgAAAB8AhQABAAUAAAAAAAAAAYQA AQAFAAAAAAAAAACKAAEAPAAAAAMANgAAAAoAT3BlblN5bWJvbAAAAAAAAKYBAAD//wAAAAAF AAAAAAAAAP8DAAAAAAAAAAAA/wMAAAAAAIgAAQACAAAAAQCHAAEABQAAAP////8AhgABAAQA AAAAAAAAZwABABAAAAC5AwAARgIAAKMKAABaAgAAjAABAAAAAACLAAEAAgAAAB8AigABAEQA AAADAD4AAAASAE5pbWJ1cyBSb21hbiBObzkgTAAAAAAAAKYBAAAAAAMAAAAFAAAAAAACAP8D AAAAAAAAAAAA/wMAAAAAAIgAAQACAAAAAQCHAAEABQAAAP////8AhgABAAQAAAAAAAAAcgAC ABcAAABFBQAA7QMAAAEAYdMAAAAAAP//AQBhAIwAAQAAAAAAiwABAAIAAAAfAIoAAQA8AAAA AwA2AAAACgBPcGVuU3ltYm9sAAAAAAAApgEAAP//AAAAAAUAAAAAAAAA/wMAAAAAAAAAAAD/ AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAGgAAAOQFAADt AwAAAQAAAMUi9AAAAAAA//8BAMUijAABAAAAAACLAAEAAgAAAB8AigABAEQAAAADAD4AAAAS AE5pbWJ1cyBSb21hbiBObzkgTAAAAAAAAKYBAAAAAAMAAAAFAAAAAAACAP8DAAAAAAAAAAAA /wMAAAAAAIgAAQACAAAAAQCHAAEABQAAAP////8AhgABAAQAAAAAAAAAcgACABcAAAC4BgAA 7QMAAAEAYdMAAAAAAP//AQBhAIwAAQAAAAAAiwABAAIAAAAfAIoAAQA8AAAAAwA2AAAACgBP cGVuU3ltYm9sAAAAAAAApgEAAP//AAAAAAUAAAAAAAAA/wMAAAAAAAAAAAD/AwAAAAAAiAAB AAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAGgAAAHEHAADtAwAAAQAAAMUi 9AAAAAAA//8BAMUijAABAAAAAACLAAEAAgAAAB8AigABAEQAAAADAD4AAAASAE5pbWJ1cyBS b21hbiBObzkgTAAAAAAAAKYBAAAAAAMAAAAFAAAAAAACAP8DAAAAAAAAAAAA/wMAAAAAAIgA AQACAAAAAQCHAAEABQAAAP////8AhgABAAQAAAAAAAAAcgACABcAAAAqCAAA7QMAAAEAYdMA AAAAAP//AQBhAIwAAQAAAAAAlQABAAQAAAAAAAAAlgABAAIAAAAJAIwAAQAAAAAA =  a      a  =  a 2

4 свойство

При делении степеней с одинаковыми показателями

основания делятся друг на друга, а показатель степени остается прежним:

a n : b n = , n m , b ≠ 0 .

5 свойство   При возведении степени в степень основание степени остается прежним, а показатели степеней перемножаются: ( a m ) n  =  a m      n ( a 2 ) 3  =  a 2      a 2      a 2  =  a 2 + 2 + 2  =  a 6

5 свойство

При возведении степени в степень основание степени остается прежним, а показатели степеней перемножаются:

( a m ) n  =  a m      n

( a 2 ) 3  =  a 2      a 2      a 2  =  a 2 + 2 + 2  =  a 6


Получите в подарок сайт учителя

Предмет: Математика

Категория: Презентации

Целевая аудитория: 7 класс

Скачать
Свойства степени с натуральным показателем 7 класс

Автор: Титов Александр Владимирович

Дата: 25.02.2015

Номер свидетельства: 178640

Похожие файлы

object(ArrayObject)#855 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(134) "Конспект урока математики «Свойства степени с натуральным показателем» "
    ["seo_title"] => string(74) "konspiekt-uroka-matiematiki-svoistva-stiepieni-s-natural-nym-pokazatieliem"
    ["file_id"] => string(6) "142210"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1418234697"
  }
}
object(ArrayObject)#877 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(122) "Презентация к открытому уроку "Степень с натуральным показателем"."
    ["seo_title"] => string(62) "priezientatsiiakotkrytomuurokustiepiensnaturalnympokazatieliem"
    ["file_id"] => string(6) "266136"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1450100362"
  }
}
object(ArrayObject)#855 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(83) ""Свойства степени с натуральным показателем" "
    ["seo_title"] => string(48) "svoistva-stiepieni-s-natural-nym-pokazatieliem-2"
    ["file_id"] => string(6) "164982"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1422724052"
  }
}
object(ArrayObject)#877 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(141) "Урок алгебры в 7 классе по теме: "Свойства степени с натуральным показателем". "
    ["seo_title"] => string(83) "urok-alghiebry-v-7-klassie-po-tiemie-svoistva-stiepieni-s-natural-nym-pokazatieliem"
    ["file_id"] => string(6) "132242"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1416314210"
  }
}
object(ArrayObject)#855 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(126) "Конспект урока алгебры "Свойства степени с натуральным показателем" "
    ["seo_title"] => string(72) "konspiekt-uroka-alghiebry-svoistva-stiepieni-s-natural-nym-pokazatieliem"
    ["file_id"] => string(6) "120584"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1413737579"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1500 руб.
2500 руб.
1600 руб.
2660 руб.
1580 руб.
2640 руб.
1120 руб.
1870 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства