kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Задача четырех красок

Нажмите, чтобы узнать подробности

Раскрашивая географическую карту естественно пользоваться по возможности меньшим количеством цветов, однако так, чтобы две страны, имеющие общую часть границы (не только общую точку), были окрашены по-разному. В 1852 году Френсис Гутри (Guthrie), составляя карту графств Англии, обратил внимание, что для такой цели вполне хватает четырех красок. Его брат, Фредерик, сообщил об этом наблюдении известному математику О. Де Моргану (DeMorgan), а тот - математической общественности. Точная формулировка гипотезы опубликована А. Кэли (Cayley, 1878).

Первое доказательство появилось год спустя и принадлежало В. Кемпе (Kempe). Одиннадцать лет спустя П. Хивуд (Heawood) обнаружил в нем ошибку. (Однако из доказательства Хивуд понял, что пяти красок действительно достаточно. Тем не менее для любой конкретной карты хватало четырех красок!) За первым ошибочным доказательством последовало множество других. В этом отношении проблема четырех красок уступала лишь знаменитой проблеме Ферма. До середины XX века, хотя проблемой четырех красок занимались многие выдающиеся математики, положение с доказательством изменилось несущественно: идеи Дж. Д. Биркгофа позволили П. Франклину в 1913 году доказать гипотезу для карты с не более чем 25 странами. Позже это число было увеличено до 38.

В 1977 году доказательство гипотезы четырех красок было наконец получено К. Аппелем и У. Хакеном (Appel, Haken) и опубликовано в двух статьях [1]. Значительную часть рутинных проверок выполнил компьютер, и это революционное нововведение в сложившуюся практику дедуктивных рассуждений в чистой математике служит основанием для некоторого естественного скептицизма по отношению к данному доказательству и по сей день (подробнее об этом в конце статьи). Сначала мы приведем точные формулировки, докажем теорему о пяти красках и укажем некоторые эквивалентные проблемы.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Задача четырех красок»

Проблема четырёх красок

Проблема четырёх красок

Административная карта России, раскрашенная в четыре цвета

Теорема о четырёх красках — утверждение о том, что всякую расположенную на сфере карту можно раскрасить четырьмя красками так, чтобы любые две области, имеющие общий участок границы, были раскрашены в разные цвета. При этом области могут быть как односвязными, так и многосвязными (в них могут присутствовать «дырки»), а под общим участком границы понимается часть линии, то есть стыки нескольких областей в одной точке общей границей для них не считаются. Эта теорема была сформулирована Фрэнсисом Гутри (англ.) в 1852 году, однако доказать её долгое время не удавалось. В течение этого времени было предпринято множество попыток как доказательства, так и опровержения, и эта задача носила название проблемы четырёх красок[1].

Задача раскраски карты на плоскости эквивалентна задаче на сфере.

Для простых карт достаточно и трёх цветов, а четвёртый цвет начинает требоваться, например, тогда, когда имеется одна область, окруженная нечетным числом других, которые соприкасаются друг с другом, образуя цикл. Теорема о пяти красках, утверждающая, что достаточно пяти цветов, имела короткое несложное доказательство и была доказана в конце XIX века, но доказательство теоремы для случая четырёх цветов столкнулось со значительными трудностями.

Теорема о четырёх красках была доказана в 1976 году Кеннетом Аппелем (англ.) и Вольфгангом Хакеном (англ.) из Иллинойского университета. Это была первая крупная математическая теорема, доказанная с помощью компьютера. Первым шагом доказательства была демонстрация того, что существует определенный набор из 1936 карт, ни одна из которых не может содержать карту меньшего размера, которая опровергала бы теорему. Аппель и Хакен использовали специальную компьютерную программу, чтобы доказать это свойство для каждой из 1936 карт. Доказательство этого факта заняло сотни страниц. После этого Аппель и Хакен пришли к выводу, что не существует наименьшего контрпримера к теореме, потому что иначе он должен бы содержать, хотя не содержит, какую-нибудь из этих 1936 карт. Это противоречие говорит о том, что вообще не существует контрпримера. Изначально доказательство не было принято всеми математиками, поскольку его невозможно было проверить вручную. В дальнейшем оно получило более широкое признание, хотя у некоторых долгое время оставались сомнения.

Чтобы развеять оставшиеся сомнения, в 1997 году Робертсон, Сандерс, Сеймур и Томас опубликовали более простое доказательство, использующее аналогичные идеи, но по-прежнему проделанное с помощью компьютера. Кроме того, в 2005 году доказательство было проделано Джорджсом Гонтиром с использованием специализированного программного обеспечения (Coq v7.3.1)[2]

Многие люди путаются в непонятных математических символах и строгих математических правилах, всегда избегая решения тех проблем, в которых встречаются не только буквы, но и цифры. Безусловно, математика бывает очень сложной, но те результаты, которые можно с помощью нее получить, могут быть достаточно неожиданны, красивы и просто поразительны. 


Теорема Брауэра о неподвижной точки 
Это теорема из такого раздела математики как топология, была доказана Лёйтзеном Брауэром. Ее чисто математическое выражение является достаточно абстрактным, но ее можно неожиданным способом применить к разным реальным событиям. Допустим, что у нас есть какая-нибудь картина (к примеру Мона Лиза), и мы можем сделать ее копию. Потом мы можем делать с этой копией что захотим – увеличивать, уменьшать, вращать, сминать, все что угодно. Терема Брауэра о неподвижной точке гласит, что если эту деформированную копию положить на оригинал, то всегда найдется хотя бы одна точка на копии, которая будет находиться ровно над этой же самой точкой изображения на оригинале. Это может быть кусочек уха, рта или глаза Моны, но обязательно такая точка найдется. 
Теорема работает и в трехмерном пространстве. Представьте, что у нас есть стакан воды, в который мы положили ложку и размешивали воду столько, сколько захотим. По теореме Брауэра, всегда будет хотя бы одна молекула воды, которая в итоге окажется ровно на том же самом месте, что и до размешивания. 
Парадокс Рассела 
На рубеже 20-го века многие ученые были увлечены новым разделом математики – теорией множеств. В принципе, множество – это совокупность каких-либо объектов. В те времена, считалось, что любой набор объектов можно считать множеством – множество всех фруктов, множество всех президентов США, и все это считалось верным. Стоит добавить, что одно множество может включать в себя другие множества. В 1901 году известный математик Бертран Рассел сделал нашумевшее открытие, когда понял, что такой способ мышления ошибочен – на самом деле не все совокупности объектов можно назвать множеством. 
Решив разобраться в этом вопросе, Рассел описал множество всех множеств, которые не содержат себя в качестве своих элементов. Множество всех фруктов не содержит в себе само себя, так что его можно включить во множество Рассела, как и огромное количество других множеств. Но что насчет самого множества Рассела? Оно не содержит в себе само себя, так что его тоже надо включить в это множество. Погодите ка… теперь оно содержит себя в самом себе, так что нам нужно его исключить. Но теперь его нужно включить в себя снова, так как на этот момент, оно не содержит себя в самом себе. Ну и так далее. Этот логический парадокс привел к пересмотру теории множеств, одному из самых важных направлений в современной математике. 


Великая теорема Ферма 
Самая известная теорема Пьера Ферма говорит о том, что это выражение x2 + y2 = z2 не имеет натуральных решений x, y и z, если в степенях находится любое натуральное число больше двух. 
Как писал сам Ферма: «…невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашел этому поистине чудесное доказательство, но поля книги слишком узки для него». Проблема в том, что Ферма написал это в 1637 году, а недоказанной она оставалась еще долгие годы. И только в 1995 году (спустя 358 лет) теорема была доказана Эндрю Уайлсом. 

Теорема о конце света 
Математика может быть использована для определения того, когда наш вид полностью вымрет. Используя вероятности, но тем не менее. 
Это теорема (которая существует уже примерно 30 лет и была открыта и переоткрыта уже несколько раз) говорит о том, что время человечества уже на исходе. Одно из доказательств (которые принадлежит астрофизику Ричарду Готту) на удивление простое: если рассматривать все время существования человеческого вида как процесс жизни отдельного организма, то можно определить на каком этапе жизни наш вид находится. 
Согласно Готту, человечество вымрет в интервале от 5100 лет до 7,8 миллионов лет от текущего времени. Итак, человечество, тебе пора писать завещание. 
В середине ХIX столетия возникло совершенно новое течение в геометрии, которому было суждено вслед за тем стать одной из главных движущих сил современной математики. Предметом новой отрасли, называемой топологией (или analysis situs), является изучение свойств геометрических фигур, сохраняющихся даже тогда, когда эти фигуры подвергаются таким преобразованиям, которые уничтожают все их и метрические и проективные свойства.

Тополог интересуется теми свойствами «предметов» (трактуемых нами пока в геометрическом смысле), которые наиболее устойчивы, то есть которые выдерживают деформации сжатия и растяжения.

Все это может навести на мысль, что топология занимается придумыванием строгих доказательств для таких истин, в которых не станет сомневаться ни один здравомыслящий человек. Но это совсем не так: существует много вопросов топологического характера, в числе которых иные формулируются чрезвычайно просто и на которые интуиция не дает удовлетворительных ответов. Примером может служить знаменитая "проблема четырех красок".



  1. Проблема четырех красок



2.1.История возникновения теоремы

С тех пор, как появились первые географические карты, встал и вопрос о том, как их лучше всего раскрашивать. С одной стороны, каждая отличная от прочих территория должна быть окрашена в свой цвет. С другой стороны, строгая функциональность не допускала кричащей пестроты. Да и типографские возможности тех времен были не так уж велики. В связи с этим, географы поставили перед математиками задачу, на первый взгляд казавшуюся довольно простой: каким минимальным количеством красок может быть раскрашена карта так, чтобы каждая из соприкасающихся на ней фигур имела свой цвет? Впервые этот вопрос сформулировал англичанин Френсис Гутри в далеком 1852 г. А об ответе – доказательстве или опровержении – математики спорят до сих пор.

Итак, в 1852 г. студент-математик Ф. Гутри обратил внимание своего преподавателя А. де Моргана на «проблему 4 красок». Поначалу солидным математикам она показалась вполне очевидным фактом, не требующим доказательств. Однако уже в 1879 г. в первом томе «Трудов Королевского географического общества» была опубликована статья выдающегося британского математика А. Кэмпе, в которой содержалось предположение о том, что соблюсти все необходимые условия при раскрашивании любой географической карты возможно, используя для этого лишь 4 краски. Это предположение автор статьи достаточно весомо доказывал, применяя внушительные аргументы и вычисления.

Казалось бы: предположили и доказали, так и раскрашивайте. Но математики, как известно, уважают точность. А потому между ними разгорелись споры на эту тему. Одни пытались теорему доказать, другие – опровергнуть. В ходе этих споров уже к концу XIX в. было доказано, что простейшая карта может быть раскрашена с применением трех, а сложнейшая – пяти цветов. Однако случай с применением именно 4 цветов оставался загадкой. Вот карта графств Британии, раскрашенная четырьмя красками [Рис.1]

Доказательство «первопроходца» Альфреда Кэмпе было опровергнуто уже в 1880 г. предложенное в этом же году Питером Тэтом иное доказательство было столь же успешно опровергнуто в 1891 г. После многих неудачных попыток доказать гипотезу для любого числа стран, математики решили доказать её, начиная с малых натуральных чисел. Так П. Франклин в 1913 году доказал гипотезу для карты в которой не более чем 25 стран, со временем он увеличил это число до 38.

С увеличением числа стран лавинообразно растет и число различных вариантов их взаимного расположения, и число вариантов раскраски карт. Проблема становилась совершенно неприступной.

Заслуженный российский математик и инженер, профессор Вячеслав Афанасьевич Горбатов в своей книге, вышедшей в 1964 г. предложил свое классическое доказательство теории четырех красок, занявшее около 30 страниц. Но, по неизвестным причинам, оно прошло незамеченным и не встретило ни подтверждений, ни опровержений.

В апреле 1975 г. редактор Scientific American Мартин Гарднер в статье «6 сенсационных открытий» публикует следующую информацию:

«За последнее время самой большой сенсацией в области чистой математики стало открытие контрпримера к знаменитой проблеме 4 красок. Напоминаю, что эту проблему вызвала гипотеза о том, что любую плоскую карту можно «правильно раскрасить», используя лишь 4 цвета. При этом «правильной» признается такая раскраска, при которой любые 2 области, граничащие между собой, раскрашиваются разными красками. После многолетних исследований эта гипотеза стала примером утверждения, неразрешимого по Гёделю. Однако в ноябре 1974 г. специалист по теории графов У. Макгрегор, профессор университета в Уоппингерс-Фоллз (штат Нью-Йорк), сумел построить карту из 100 областей, раскрасить которую невозможно правильно, используя менее 5 цветов. Статья об этом открытии была опубликована в 1973 г. в номере Journal of Combinatorial Theory, Series В»

Несмотря на откровенную путаницу, материал об этом «открытии» вызвал бурную реакцию читателей. Приведенный в статье рисунок читатели с восторгом раскрашивали «правильно», не жалея на это ни сил, ни времени. Апогеем стало уведомление об иске на 25 млн. долларов от читателя, потратившего более 25 лет на решение проблемы четырех красок, у которого публикация вызвала тяжелейший нервный срыв и инсульт…

В итоге, как сама журнальная статья, так и многомиллионный судебный иск оказались апрельским розыгрышем. Однако математики отнюдь не сочли проблему исчерпавшей себя. Более того, искать решение стало еще интереснее, ведь в распоряжении ученых появились компьютеры! В 1976 г. математики из Иллинойского университета Кеннет Аппель и Вольфганг Хакен с помощью ЭВМ создали 1936 карт, ни одна из которых не могла опровергнуть верность теории. Доказательство заняло сотни листов. На его основании ученые утверждали, что контрпримера этой теореме существовать не может! Идея их доказательства состояла в следующем: сначала доказывается возможность раскраски для карт с числом n стран, 0, затем с помощью компьютера подтверждается возможность раскраски карт и для0. Потратив свыше тысячи часов машинного времени, перебрав громадное число вариантов, компьютер подтвердил справедливость гипотезы. Таким образом, вековая проблема четырех красок была решена.

Это доказательство, впервые в математике полученное с помощью компьютера, получило широчайшее признание. Оставались, конечно, отдельные скептики, противившиеся тому, что такое решение не может быть проверено вручную. Возможно, именно поэтому в 1997 г. группа американских ученых предложила новое, более простое доказательство. Впрочем, идеи были аналогичны, а главным помощником исследователей по-прежнему был компьютер. В 2005 г. доказательство снова подтвердилось Джорджсом Гонтиром, который использовал для этого специализированное программное обеспечение.

Пожалуй, на этом историю теоремы о четырех красках можно считать исчерпанной. Впрочем, если вы считаете себя великим математиком, вполне можете попытаться самостоятельно ее доказать либо опровергнуть. А можете просто поиграть, ведь тренировка мозга и развитие логического мышления не вредило до сих пор еще никому.

Я тоже попробовала самостоятельно раскрашивать карты, чтобы убедиться в том, что для раскраски любой конкретной карты хватает четырех красок. Вот, например, раскраска карты России, подтверждающая гипотезу Ф. Гутри, что карту можно раскрасить четырьмя красками [Рис 2].

Раскрашивая карту, я обратила внимание и на то, что её нельзя раскрасить тремя красками. В самом деле, если рассмотреть четыре территории Чукотский автономный округ, Камчатский край, Республика Якутия, Магаданская область, то можно заметить, что Чукотский автономный округ, окружен только тремя этими территориями. Это значит, если территорию Чукотского округа покрасить первым цветом, то для покраски территорий Камчатского края, Республики Якутия, Магаданской области потребуется ещё три цвета.

За время существования теоремы о четырех красках на ее базе были созданы многочисленные логические игры. Поначалу играть в них можно было только на бумаге, затем появились компьютерные варианты. Проверить свои математические способности в этой области можете и вы, используя логическую онлайн-игру «Четыре краски».



2.2.Игра «4 краски»

Познакомившись с проблемой четырёх красок, известный американский популяризатор математики Стивен Барр придумал логическую игру на бумаге для двух игроков и бесхитростно назвал её «Четыре краски». Вот простые правила этой любопытной игры для двоих: Для этой игры нужны четыре цветных карандаша. Первый игрок начинает игру, рисуя произвольную пустую область. Второй игрок закрашивает её любым из четырёх цветов и в свою очередь рисует свою пустую область. Первый игрок закрашивает область второго игрока и добавляет новую область, и так далее — каждый игрок раскрашивает область соперника и добавляет свою. При этом области, имеющие общую границу, должны быть раскрашены в разные цвета. Проигрывает тот, кто на своём ходу вынужден будет взять пятую краску. Я познакомила с этой игрой своих одноклассников, кто-то ею увлекся. Выигрышной стратегии мы пока не нашли, но некоторые тактические приёмы научились применять. На рисунке ниже приведена типичная картинка, которая остается после очередной игры «Четыре краски» [Рис 3].

Здесь натуральными числами обозначен порядок появления областей на игровой схеме. Понятно, что нечетными числами обозначены области, нарисованные первым игроком, четными – вторым игроком. По правилам игры, когда первый игрок нарисовал 9-ую область, второй должен её закрасить, но для этого ему потребуется пятый цвет, значит, он проиграл.

Это ни в коей мере не означает, что таким рисунком опровергается гипотеза. Раскрасить области этой схемы можно по-другому [Рис 3] так, чтобы выполнялись все условия раскраски, а лишь подтверждает трудность доказательства проблемы. По этому поводу М. Гарднер сказал: «Я не знаю лучшего способа понять трудности, которые встречаются на пути решения проблемы четырёх красок, чем просто поиграть в эту любопытную игру»

Существуют также следующие вариации игры:

  1. Карта заранее разбивается случайным образом на области различной величины, и каждый ход игры меняется игрок который закрашивает область, а также меняется цвет (в строгой последовательности). Таким образом каждый игрок закрашивает карту только двумя цветами, а в случае если не может закрасить так, чтобы области, имеющие общую границу были раскрашены в разные цвета. пропускает ход. Игра прекращается, когда ни один из игроков больше не сможет сделать ни одного хода. Выигрывает тот, у кого общая площадь закрашенных им областей больше.

  2. Квадрат разбит на несколько квадратов (в основном 4x4), и его стороны окрашены в один из четырех цветов (каждый в разный цвет). Первым ходом закрашивается квадрат прилегающий к стороне, каждый последующий ход можно закрашивать тот квадрат, который прилегает к одному из закрашенных квадратов. Нельзя закрашивать квадрат теми цветами, которыми закрашен один из прилегающих к нему квадратов (в том числе и по диагонали) или прилегающая к квадрату сторона. Выигрывает игрок, делающий последний ход.

Далее приведу несколько задач данной тематики, которые обязаны своим рождением, так долго не решаемой проблемы четырех красок.



2.3.Тематические задачи

Задача 1. Раскрасьте эту карту из 100 стран в четыре цвета так, чтобы соседние страны были окрашены в разные цвета. Решение приведено на рисунке 4.

Задача 2. Рассмотрим все возможные карты на плоскости, образованные прямыми. Примером такой карты может служить обычная шахматная доска. Достаточно ли двух красок для раскрашивания всех таких карт?

Оказывается, достаточно, и доказать это нетрудно. На любой правильно раскрашенной карте интересующего нас типа проведем еще одну, разделив плоскость на две «карты» [Рис.5 Для раскраски любой карты, образованной прямыми, пересекающими всю ее поверхность от одного края листа до другого, достаточно двух красок].

Каждая из новых карт в отдельности раскрашена правильно, но к новой «границе» только что проведенной прямой примыкают пары областей, окрашенных в один и тот же цвет. Для того чтобы восстановить правильную раскраску всей карты в целом, нужно перекрасить одну из карт-половинок (какую именно — безразлично), изменив окраску каждой из областей на противоположную. Карта над черной прямой «обращена» — перекрашена так, словно «отрицательные» области стали «положительными» и наоборот, и, как нетрудно видеть, вся карта раскрашена правильно.

Для завершения доказательства рассмотрим плоскость, разделенную на две области одной-единственной прямой. Такую карту, разумеется, можно раскрасить в два цвета. Проведем вторую прямую и раскрасим новую карту, переменив все цвета по одну сторону от новой прямой на противоположные. Затем проведем третью прямую и т. д. Ясно, что предложенный метод пригоден при любом числе прямых. Следовательно, «методом полной математической индукции» мы доказали теорему о возможности раскраски в два цвета всех карт, образованных прямыми на плоскости. Доказательство можно несколько обобщить на случай более разнообразных карт, например таких, как карта на рис. 2, образованная либо кривыми, пересекающими весь лист от одного края до другого, либо замкнутыми кривыми без самопересечений [Рис.6. Двух красок достаточно для раскрашивания карты, образованной либо линиями, идущими от одного края листа до другого, либо замкнутыми кривыми].

Проведя еще одну кривую, пересекающую всю карту от одного ее края до другого, мы должны, как и прежде, изменить все цвета по одну сторону от кривой на противоположные. Если вновь проведенная кривая замкнута, то изменить нужно окраску всех областей, попавших внутрь кривой, или, если угодно, всех областей, оказавшихся снаружи. Замкнутые кривые могут иметь и точки самопересечения, но в этом случае перекрашивание областей более сложно.

Заметим, что на всех приведенных здесь двухцветных картах все вершины четны (напомним, что вершиной называется точка, в которой сходятся границы более двух стран), то есть в каждой вершине сходится четное число границ. Можно показать, что любую карту на плоскости можно раскрасить в два цвета тогда и только тогда, когда все ее вершины четны. Это утверждение известно как «теорема о двухцветных картах». Нетрудно видеть, что на торе эта теорема не выполняется. Для этого достаточно скатать в трубку квадратный лист бумаги, расчерченный на девять маленьких квадратов (наподобие игрового поля для крестиков и ноликов), а концы трубки склеить. Все вершины на таком «клетчатом» торе четны, но для его раскрашивания необходимо взять три краски.

Задача 3. На плоскости нарисовано n окружностей. В каждой окружности проведено по хорде так, что хорды двух окружностей имеют между собой самое большое одну общую точку (рис.7.1). Докажите, что получившуюся карту на рисунке слева всегда можно раскрасить тремя красками так, чтобы любые две области, имеющие общий участок границы, были раскрашены в разные цвета.

Доказательство. Идею доказательства проведем для трёх окружностей с хордами, хотя все рассуждения можно обобщить на случай, когда на плоскости нарисовано n окружностей с хордами. Состоит она в следующем:

первая, малая окружность и её хорда разбивает плоскость на три части. Во всех областях первой части поставим по 0, во всех областях второй части поставим 1, во всех областях третьей части поставим 2 (рис.7.2);

вторая, средняя окружность и её хорда разбивает плоскость на три части. Во всех областях первой части поставим по 0, во всех областях второй части поставим 1, во всех областях третьей части поставим 2 (рис. 7.3);

третья, большая окружность и её хорда разбивает плоскость на три части. Во всех областях первой части поставим по 0, во всех областях второй части поставим 1, во всех областях третьей части поставим 2 (рис. 7.4).

При этом каждой области будет соответствовать три числа, найдем их сумму (рис. 7.5), и числа каждой области заменим остатком от деления его на 3 (рис.7. 6).

Области, у которых этот остаток равен 0, закрасим синей краской;

области, у которых этот остаток равен 1, закрасим желтой краской;

области, у которых этот остаток равен 2, закрасим красной краской.

Полученная таким образом раскраска (рис. 7.7) удовлетворяет условия задачи.



Получите в подарок сайт учителя

Предмет: Математика

Категория: Планирование

Целевая аудитория: 7 класс

Скачать
Задача четырех красок

Автор: Фомина Нюргуяна Владимировна

Дата: 15.10.2016

Номер свидетельства: 349288

Похожие файлы

object(ArrayObject)#865 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(73) "Проект по теме "Проблема четырех красок""
    ["seo_title"] => string(40) "proekt_po_teme_problema_chetyrekh_krasok"
    ["file_id"] => string(6) "546271"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1586686685"
  }
}
object(ArrayObject)#887 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(47) "программа кружка "Матема" "
    ["seo_title"] => string(26) "proghramma-kruzhka-matiema"
    ["file_id"] => string(6) "118949"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1413298112"
  }
}
object(ArrayObject)#865 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(94) "Конспект урока на тему "Химический состав растений""
    ["seo_title"] => string(49) "konspiekturokanatiemukhimichieskiisostavrastienii"
    ["file_id"] => string(6) "277531"
    ["category_seo"] => string(9) "biologiya"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1452929557"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства