Рабочая программа по алгебре 8 класс (Макарычев Ю.Н)
Рабочая программа по алгебре 8 класс (Макарычев Ю.Н)
Рабочая программа учебного курса по алгебре для 8 класса разработана на основе:
Федерального закона «Об образовании» № 273 от 29.12.2012г
Федерального компонента государственного образовательного стандарта начального общего, основного общего и среднего (полного) общего образования (Приказ Минобразования России от 05.03.2004г № 1089)
Федерального базисного учебного плана и примерных учебных планов для общеобразовательных учреждений Российской Федерации, реализующих программы общего образования 2005г
Программа: Бурмистрова Т.А. Алгебра 7 - 9 классы. Программы общеобразовательных учреждений. М., «Просвещение», 2009.
Составлено на основе федерального компонента государственного Стандарта основного общего образования по математике
Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса. Содержание программы направлено на освоение учащимися знаний, умений и навыков на базовом уровне, что соответствует Образовательной программе школы. Она включает все темы, предусмотренные федеральным компонентом государственного образовательного стандарта основного общего образования по математике. На изучение алгебры отводится 3 часа в неделю, всего 102 часа в год, в том числе на контрольные работы 10 часов.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Рабочая программа по алгебре 8 класс (Макарычев Ю.Н) »
Муниципальное бюджетное общеобразовательное учреждение
средняя общеобразовательная школа №8 с Левокумка
Минераловодского района
РАБОЧАЯ ПРОГРАММА
Утверждено на заседании
педагогического совета
протокол №_____
от «___» августа 2014 г
председатель педсовета _________ О.А.Долгова
Предмет: алгебра
Класс – 8
2014-2015 учебный год
Учитель: Зеленская Светлана Валентиновна
Муниципальное бюджетное общеобразовательное учреждение
средняя общеобразовательная школа №8 с Левокумка
Минераловодского района
Согласовано
на заседании МО учителей
_____________________ цикл а
протокол №___
от «___» августа 2014 г
Руководитель МО________Малинина М.А.
Согласовано
Зам.директора по УВР_______ Зеленская С.В
«____» августа 2014г
Пояснительная записка
Рабочая программа учебного курса по алгебре для 8 класса разработана на основе:
Федерального закона «Об образовании» № 273 от 29.12.2012г
Федерального компонента государственного образовательного стандарта начального общего, основного общего и среднего (полного) общего образования (Приказ Минобразования России от 05.03.2004г № 1089)
Федерального базисного учебного плана и примерных учебных планов для общеобразовательных учреждений Российской Федерации, реализующих программы общего образования 2005г
Программа: Бурмистрова Т.А. Алгебра 7 - 9 классы. Программы общеобразовательных учреждений. М., «Просвещение», 2009.
Составлено на основе федерального компонента государственного Стандарта основного общего образования по математике
Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса. Содержание программы направлено на освоение учащимися знаний, умений и навыков на базовом уровне, что соответствует Образовательной программе школы. Она включает все темы, предусмотренные федеральным компонентом государственного образовательного стандарта основного общего образования по математике. На изучение алгебры отводится 3 часа в неделю, всего 102 часа в год, в том числе на контрольные работы 10 часов.
Учебный процесс ориентирован на: рациональное сочетание устных и письменных видов работы как при изучении теории, так и при решении задач; сбалансированное сочетание традиционных и новых методов обучения; оптимизированное применение объяснительно-иллюстративных и эвристических методов; использование современных технических средств обучения.
Преобладающей формой текущего контроля выступает письменный (тесты, самостоятельные и контрольные работы) и устный опрос.
Для реализации учебной программы используется учебно-методический комплект, включающий:
1. Алгебра. 8 класс: учебник для общеобразовательных учреждений / Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков С.Б. Суворова. – М.: Прсвещение, 2010.
2. Жохов В. И. Алгебра. Дидактические материалы. 8 класс / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк. – М.: Просвещение, 2010.
3. Макарычев Ю.Н. Изучение алгебры. 7-9 классы: книга для учителя / Ю. Н. Макарычев, Н. Г. Миндюк, С. Б. Суворова, И. С. Шлыкова. – М.: Просвещение, 2010.
4. Жохов В.И. Уроки алгебры в 8 классе / В. И. Жохов, Г. Д. Карташева. – М.: Просвещение, 2010.
5. Дудницын Ю. П. Алгебра. Тематические тесты. 8 класс / Ю.П. Дудницын, В.Л. Кронгауз. – М.: Просвещение, 2010.
Цели программы обучения: развитие вычислительных и формально-оперативных алгебраических умений учащихся до уровня, позволяющего уверенно использовать при решении задач математики и смежных предметов (физики, химии и др.); усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач; осуществление функциональной подготовки школьников.
Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
– овладениесистемой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
– интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
– формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
– воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
Количество учебных часов:
В год -102 часов (3 часа в неделю, всего 102 часов)
В том числе:
Контрольных работ – 10 (включая итоговую контрольную работу)
Формы промежуточной и итоговой аттестации: Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных работа. Итоговая аттестация предусмотрена в виде административной контрольной работы.
Уровень обучения – базовый.
Отличительные особенности рабочей программы по сравнению с примерной:
В программу внесены изменения: в начале года предусмотрены уроки вводного повторения и вводный срез знаний (6 часов) за счет уроков заключительного повторения.
Внесение данных изменений позволит, повысить уровень обученности учащихся по предмету, а также более эффективно осуществить индивидуальный подход к обучающимся.
Требования к уровню подготовки учащихся
В результате изучения алгебры ученик должен
знать/понимать
существо понятия математического доказательства; примеры доказательств;
существо понятия алгоритма; примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
уметь
выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним;
решать линейные неравенства с одной переменной и их системы;
находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
описывать свойства изученных функций, строить их графики;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
интерпретации графиков реальных зависимостей между величинами.
Содержание программы
1. Рациональные дроби
Рациональная дробь. Основное свойство дроби, сокращение дробей. Сложение, вычитание, умножение и деление дробей.
Преобразование рациональных выражений. Функция и её график.
Цель – выработать умение выполнять тождественные преобразования рациональных выражений.
Знать основное свойство дроби, рациональные, целые, дробные выражения; правильно употреблять термины «выражение», «тождественное преобразование», понимать формулировку заданий: упростить выражение, разложить на множители, привести к общему знаменателю, сократить дробь. Знатьи понимать формулировку заданий: упростить выражение, разложить на множители, привести к общему знаменателю, сократить дробь, свойства обратной пропорциональности
Уметь осуществлять в рациональных выражениях числовые подстановки и выполнять соответствующие вычисления, выполнять действия сложения и вычитания с алгебраическими дробями, сокращать дробь, выполнять разложение многочлена на множители применением формул сокращенного умножения, выполнять преобразование рациональных выражений. Уметь осуществлять в рациональных выражениях числовые подстановки и выполнять соответствующие вычисления, выполнять действия умножения и деления с алгебраическими дробями, возводить дробь в степень, выполнять преобразование рациональных выражений; правильно употреблять функциональную терминологию (значение функции, аргумент, график функции), строить график обратной пропорциональности, находить значения функции y=k/x по графику, по формуле.
2. Квадратные корни
Понятие об иррациональном числе. Общие сведения о действительных числах. Квадратный корень, приближённое значение квадратного корня. Свойства квадратных корней, преобразования выражений, содержащих квадратные корни. Функция и её график.
Цель – систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие числа; выработать умение выполнять простейшие преобразования выражений, содержащих квадратные корни.
Знатьопределения квадратного корня, арифметического квадратного корня, какие числа называются рациональными, иррациональными, как обозначается множество рациональных чисел; свойства арифметического квадратного корня.
Уметь выполнять преобразование числовых выражений, содержащих квадратные корни; решать уравнения вида x2=а; находить приближенные значения квадратного корня; находить квадратный корень из произведения, дроби, степени, строить график функции и находить значения этой функции по графику или по формуле; выносить множитель из-под знака корня, вносить множитель под знак корня; выполнять преобразование выражений, содержащих квадратные корни.
3. Квадратные уравнения
Квадратное уравнение. Формулы корней квадратного уравнения. Теорема Виета. Решение рациональных уравнений. Решение задач, приводящих к квадратным и рациональным уравнениям.
Цель – выработать умения решать квадратные уравнения, простейшие рациональные уравнения и применять их к решению задач.
Знать, что такое квадратное уравнение, неполное квадратное уравнение, приведенное квадратное уравнение; формулы дискриминанта и корней квадратного уравнения, теорему Виета и обратную.
Уметь решать квадратные уравнения выделением квадрата двучлена, решать квадратные уравнения по формуле, решать неполные квадратные уравнения, решать квадратные уравнения с помощью теоремы, обратной теореме Виета, использовать теорему Виета для нахождения коэффициентов и свободного члена квадратного уравнения; решать текстовые задачи с помощью квадратных уравнений.
Знатькакие уравнения называются дробно-рациональными, какие бывают способы решения уравнений, понимать, что уравнение – это математический аппарат решения разнообразных задач математики, смежных областей знаний, практики.
Уметьрешать дробно-рациональные уравнения, решать уравнения графическим способом, решать текстовые задачи с помощью дробно-рациональных уравнений.
4. Неравенства
Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Применение свойств неравенств к оценке значения выражения. Линейное неравенство с одной переменной. Система линейных неравенств с одной переменной.
Цель – выработать умения решать линейные неравенства с одной переменной и их системы.
Знатьопределение числового неравенства с одной переменной, что называется решением неравенства с одной переменной, что значит решить неравенство, свойства числовых неравенств, понимать формулировку задачи «решить неравенство».
Уметьзаписывать и читать числовые промежутки, изображать их на числовой прямой, решать линейные неравенства с одной переменной, решать системы неравенств с одной переменной.
Уметьприменять свойства неравенства при решении неравенств и их систем.
5. Степень с целым показателем
Степень с целым показателем и её свойства. Стандартный вид числа. Запись приближенных значений. Действия над приближенными значениями.
Цель – сформировать умение выполнять действия над степенями с целыми показателями, ввести понятие стандартного вида числа.
Знать определение степени с целым и целым отрицательным показателем; свойства степени с целым показателями.
Уметьвыполнять действия со степенями с натуральным и целым показателями; записывать числа в стандартном виде, записывать приближенные значения чисел, выполнять
действия над приближенными значениями.
6. Элементы статистики и теории вероятностей
Сбор и группировка статистических данных. Наглядное представление статистической информации
7. Повторение. Решение задач
Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 8 класса).
Формы и средства контроля
Контрольные работы. Источник: Программы общеобразовательных учреждений. Алгебра. 7-9 классы./ сост. Т.А. Бурмисторва. – М.Просвещение, 2008-255с
Самостоятельные работы. Источник: Алгебра: дидакт.материалы для 7 кл. / Л.И.Звавич, Л.В. Кузнецова, С.Б. Суворова. – 13-е изд.- М.:Просвещение, 2008.- 160 с.
Перечень учебно-методических средств
Литература
Алгебра: Учеб. для 8 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.: Просвещение, 2010.
Дидактические материалы по алгебре для 8 класса / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк. – М.: Просвещение, 2006. – 144 с.
Формула корней квадратного уравнения. Неполные квадратные уравнения
Уметь решать квадратные уравнения по формуле, неполные квадратные уравнения
Математический диктант.
Применение математических методов для решения содержательных задач из различных областей науки и практики
§ 8, п. 23, №561,
563, 577,
57
Решение задач с помощью квадратных уравнений
1
Комбинированный урок
Формула корней квадратного уравнения. Неполные квадратные уравнения
Уметь решать квадратные уравнения по формуле, неполные квадратные уравнения
Индивидуальные карточки
§ 8, п. 23, 564 567, 576 (а), 579
58
Теорема Виета
1
Изучение нового материала
Формулировка теоремы Виета
Знать теорему Виета
Математический диктант
П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степени, большей четырех
§ 8, п. 24, № 582, 584,597
59
Теорема Виета
1
Повторение, обобщение и систематизация знаний
Применение теоремы Виета
Уметь решать квадратные уравнения с помощью теоремы Виета
Самостоятельная работа (15 мин): С-27, № 2, 3, 4, 5
№ 586, 589, 595, 599
60
Контрольная работа №5 по теме: «Квадратные уравнения»
1
Контроль знаний и умений
Формула корней квадратного уравнения. Теорема Виета
Уметь решать квадратные уравнения
Контрольная работа 5 (40 мин)
Повторить п.21-п. 24
61
Анализ контрольной работы. Решение дробных рациональных уравнений