kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Рабочая программа. Геометрия 8 класс

Нажмите, чтобы узнать подробности

Рабочая программа по школьному курсу «Геометрия» для 8 класса составлена на основе федерального компонента государственного стандарта основного общего образования.

Данная рабочая программа ориентирована на учащихся 8 класса и реализуется на основе следующих документов:

1. Стандарт основного общего образования по математике.

Стандарт основного общего образования по математике //Сборник нормативно-правовых документов и методических материалов, Москва: «Вентана-Граф», 2008.

2.  Геометрия. Сборник рабочих программ 7 – 9 классы/Сост. Т.А. Бурмистрова – Москва: «Просвещение», 2014.

Рабочая программа соответствует базовому уровню подготовки школьников по Стандарту основного общего образования, конкретизирует содержание тем и даёт распределение часов по разделам курса.

Программа соответствует учебнику «Геометрия 7-9» для образовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина. – М.: Просвещение, 2014 г.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Рабочая программа. Геометрия 8 класс»

Муниципальное бюджетное общеобразовательное учреждение

«Черновская школа Первомайского района Республики Крым»

РАССМОТРЕНО УТВЕРЖДАЮ

на заседании педагогического И.о. директора школы

совета протокол № ____ __ _________И.И. Иванова

от «___» ________ 2015 г «___» ___________ 2015г.







Рабочая программа


по геометрии

для 8 класса

на 2015-2016 учебный год




учитель: Васечкин В.В.








РАССМОТРЕНО СОГЛАСОВАНО

на заседании методического объединения ЗДУВР

протокол № _________ __________И.И. иванова

от «___» ________ 2015 г «___» ___________ 2015г.


Пояснительная записка

Рабочая программа по школьному курсу «Геометрия» для 8 класса составлена на основе федерального компонента государственного стандарта основного общего образования.

Данная рабочая программа ориентирована на учащихся 8 класса и реализуется на основе следующих документов:

1. Стандарт основного общего образования по математике.

Стандарт основного общего образования по математике //Сборник нормативно-правовых документов и методических материалов, Москва: «Вентана-Граф», 2008.

2. Геометрия. Сборник рабочих программ 7 – 9 классы/Сост. Т.А. Бурмистрова – Москва: «Просвещение», 2014.

Рабочая программа соответствует базовому уровню подготовки школьников по Стандарту основного общего образования, конкретизирует содержание тем и даёт распределение часов по разделам курса.

Программа соответствует учебнику «Геометрия 7-9» для образовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина. – М.: Просвещение, 2014 г.

Общая характеристика учебного предмета

Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся.

В курсе геометрии 8-го класса продолжается решение задач на признаки равенства треугольников, но в совокупности с применением новых теоретических факторов. Теореме о сумме углов выпуклого многоугольника позволяет расширить класс задач. Формируется практические навыки вычисления площадей многоугольников в ходе решения задач. Особое внимание уделяется применению подобия треугольников к доказательствам теорем и решению задач. Даются первые знания о синусе, косинусе и тангенсе острого угла прямоугольного треугольника. Даются учащимся систематизированные сведения об окружности и её свойствах, вписанной и описанной окружностях. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Курс характеризуется рациональным сочетанием логической строгости и геометрической наглядности. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса, повышается роль дедукции, степень абстрактности изучаемого материала. Учащиеся овладевают приемами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Систематическое изложение курса позволяет начать работу по формированию представлений, учащихся о строении математической теории, обеспечивает развитие логического мышления школьников.

Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умения учащихся вычленять геометрические факты, формы и отношения в предметах и явлениях действительности, использовать язык геометрии для их описания.

В курсе геометрии 8 класса обучающиеся знакомятся с различными видами четырехугольников, их свойствами и признаками; у учащихся формируются умения решать задачи на нахождение площадей различных фигур. В ходе изучения курса, учащиеся развивают навыки решения геометрических задач на доказательство, применяя признаки подобия треугольников, а также различных задач вычислительного характера.

Таким образом, в ходе освоения содержания курса, учащиеся получают возможность:

  • овладеть символическим языком математики;

  • развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

  • развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Общеучебные умения, навыки и способы деятельности.

В ходе преподавания математики в основной школе, работы над формированием у учащихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

  • исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

  • проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

  • поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

Место предмета в федеральном базисном учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 850 ч. из расчета 5 ч. в неделю с V по IX класс.

Математика изучается в 2015/2016 году в 8 классе - 5 ч. в неделю, всего 168 ч.

На преподавание геометрии в 8 классе отведено 2 часа в неделю, всего 68 часов в год.

Изучение геометрии на ступени основного общего образования направлено на достижение следующих целей:

• овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

• интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственного мышления и воображения, способности к преодолению трудностей;

• формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

• воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

В курсе геометрии 8 класса условно выделены четыре основных раздела: четырёхугольники, площадь, подобные треугольники, окружность.


Раздел 1. Четырёхугольники.

Доказательства большинства теорем данного раздела и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить в начале изучения темы. Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.

Цели изучения раздела:

• изучить наиболее важные виды четырехугольников - параллелограмм, прямоугольник, ромб, квадрат, трапецию;

• дать представление о фигурах, обладающих осевой или центральной симметрией;


Раздел 2. Площади фигур.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата, обоснование которой не является обязательным для учащихся. Нетрадиционной для школьного курса является теорема об отношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

Цели изучения раздела:

• расширить и углубить полученные в 5 - 6 классах представления, учащихся об измерении и вычислении площадей;

• вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции;

• доказать одну из главных теорем геометрии - теорему Пифагора.


Раздел 3. Подобные треугольники.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон. Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу. На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение. В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.

Цели изучения раздела:

• ввести понятие подобных треугольников;

• рассмотреть признаки подобия треугольников и их применения к доказательству теорем и решению задач;

• сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.


Раздел 4. Окружность.

В данном разделе вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач. Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров. Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.

Цели изучения раздела:

• расширить сведения об окружности, полученные учащимися в 6 классе;

• изучить новые факты, связанные с окружностью;

• познакомить учащихся с четырьмя замечательными точками треугольника.


Содержание учебного предмета

Повторение 2 часа


Тема 1. Четырехугольники 14 часов

Основная цель – изучить наиболее важные виды четырехугольников – параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.

Знать/понимать:

- Определения: многоугольника, параллелограмма, трапеции, прямоугольника, ромба, квадрата;

- формулу суммы углов выпуклого многоугольника;

- свойства этих четырехугольников;

- признаки параллелограмма;

- виды симметрии.

Уметь:

- распознавать на чертеже многоугольники и выпуклые многоугольники; параллелограммы и трапеции;

- применять формулу суммы углов выпуклого многоугольника;

- применять свойства и признаки параллелограммов при решении задач;

- делить отрезок на n равных частей;

- строить симметричные точки и распознавать фигуры, обладающие осевой и центральной симметрией;

- выполнять чертеж по условию задачи.


Тема 2. Площади фигур 14 часов

Основная цель – расширить и углубить полученные в 5-6 классах представления, учащихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии – теорему Пифагора.

Знать/понимать:

- представление о способе измерения площади, свойства площадей;

- формулы площадей: прямоугольника, параллелограмма, треугольника, трапеции;

- формулировку теоремы Пифагора и обратной ей.

Уметь:

- находить площади прямоугольника, параллелограмма, треугольника, трапеции;

- применять формулы при решении задач;

- находить стороны треугольника, используя теорему Пифагора;

- определять вид треугольника, используя теорему, обратную теореме Пифагора.

- выполнять чертеж по условию задачи.


Тема 3. Подобные треугольники 19 часов

Основная цель – ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.

Знать/понимать:

- определение подобных треугольников;

- формулировки признаков подобия треугольников;

- формулировку теоремы об отношении площадей подобных треугольников;

- формулировку теоремы о средней линии треугольника;

- свойство медиан треугольника;

-понятие среднего пропорционального,

- свойство высоты прямоугольного треугольника, проведенной из вершины прямого угла;

- определение синуса, косинуса, тангенса острого угла прямоугольного треугольника

- значения синуса, косинуса, тангенса углов 30º, 45º, 60º, 90º.

Уметь:

- находить элементы треугольников, используя определение подобных треугольников;

- находить отношение площадей подобных треугольников;

- применять признаки подобия при решении задач;

- применять метод подобия при решении задач на построение;

- находить значение одной из тригонометрических функций по значению другой;

- решать прямоугольные треугольники.


Тема 4. Окружность 18 часов

Основная цель – расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить учащихся с четырьмя замечательными точками треугольника.

Знать/понимать:

- случаи взаимного расположения прямой и окружности;

- понятие касательной, точек касания, свойство касательной;

- определение вписанного и центрального углов;

- определение серединного перпендикуляра;

- формулировку теоремы об отрезках пересекающихся хорд;

- четыре замечательные точки треугольника;

- определение вписанной и описанной окружностей.

Уметь:

- определять и изображать взаимное расположение прямой и окружности;

- окружности, вписанные в многоугольник и описанные около него;

- распознавать и изображать центральные и вписанные углы;

- находить величину центрального и вписанного углов;

- применять свойства вписанного и описанного четырехугольника при решении задач;

- выполнять чертеж по условию задачи;

- решать простейшие задачи, опираясь на изученные свойства.


Повторение 2 часа


Календарно-тематическое планирование

п/п

Наименование разделов, тем

Дата

план.

Дата

факт.

1

Урок вводного повторения



2

Диагностическая работа




Четырёхугольники



3

Многоугольник. Выпуклый многоугольник



4

Сумма внутренних углов многоугольника



5

Четырёхугольник



6

Параллелограмм и его свойства.



7

Признаки параллелограмма



8

Решение задач



9

Самостоятельная работа № 1



10

Трапеция



11

Прямоугольник



12

Ромб



13

Квадрат



14

Решение задач



15

Самостоятельная работа № 2



16

Контрольная работа № 1 «Четырёхугольники»




Площади фигур



17

Понятие площади многоугольника



18

Площадь прямоугольника и квадрата



19

Площадь параллелограмма



20

Площадь треугольника



21

Площадь трапеции



22

Решение задач



23

Самостоятельная работа № 3



24

Анализ самостоятельной работы. Решение задач



25

Теорема Пифагора



26

Теорема, обратная теореме Пифагора



27

Формула Герона



28

Решение задач



29

Самостоятельная работа № 4



30

Контрольная работа № 2 «Площади фигур»




Подобные треугольники



31

Пропорциональные отрезки. Определение подобных треугольников



32

Отношение площадей подобных треугольников. Решение задач



33

Первый признак подобия треугольников



34

Второй признак подобия треугольников



35

Третий признак подобия треугольников



36

Самостоятельная работа № 5



37

Анализ самостоятельной работы. Решение задач



38

Контрольная работа № 3 «Подобие треугольников»



39

Средняя линия треугольника



40

Пропорциональные отрезки в прямоугольном треугольнике



41

Практические приложения подобия треугольников



42

О подобии произвольных фигур



43

Применение подобия к доказательству теорем и решению задач



44

Анализ самостоятельной работы. Решение задач



45

Самостоятельная работа № 6



46

Синус, косинус и тангенс острого угла прямоугольного треугольника



47

Значения синуса, косинуса и тангенса стандартных углов



48

Решение задач



49

Контрольная работа № 4 «Решение прямоугольных треугольников»




Окружность



50

Взаимное расположение прямой и окружности



51

Касательная к окружности




Решение задач



52

Градусная мера дуги окружности



53

Теорема о вписанном угле



54

Решение задач



55

Самостоятельная работа № 7



56

Анализ самостоятельной работы. Решение задач



57

Свойства биссектрисы угла



58

Свойства серединного перпендикуляра к отрезку



59

Теорема о пересечении высот треугольника



60

Решение задач



61

Вписанная окружность



62

Описанная окружность



63

Решение задач



64

Самостоятельная работа № 8



65

Анализ самостоятельной работы. Решение задач



66

Контрольная работа № 5 «Окружность»



67

Решение задач повышенной сложности



68

Решение задач повышенной сложности




Критерии оценивания

Для оценки достижений, учащихся применяется пятибалльная система оценивания.


Оценка письменных контрольных работ, обучающихся по математике.


Ответ оценивается отметкой «5», если:

1) работа выполнена полностью;

2) в логических рассуждениях и обосновании решения нет пробелов и ошибок;

3) в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).


Отметка «4» ставится, если:

1) работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

2) допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).


Отметка «3» ставится, если:

1) допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.


Отметка «2» ставится, если:

1) допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.


Отметка «1» ставится, если:

1) обучающийся отказался от выполнения учебных обязанностей.



Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.


Оценка устных ответов, обучающихся по математике


Ответ оценивается отметкой «5», если ученик:

1) полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

2) изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

3) правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

4) показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

5) продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

6) отвечал самостоятельно, без наводящих вопросов учителя;

7) возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.


Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

1) в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

2) допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

3) опущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.


Отметка «3» ставится в следующих случаях:

1) неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке учащихся» в настоящей программе по математике);

2) имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

3) ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

4) при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.


Отметка «2» ставится в следующих случаях:

1) не раскрыто основное содержание учебного материала;

2) обнаружено незнание учеником большей или наиболее важной части учебного материала;

3) допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.


Отметка «1» ставится в следующих случаях:

1) ученик обнаружил полное незнание и непонимание изучаемого учебного материала;

2) не смог ответить ни на один из поставленных вопросов по изучаемому материалу;

3) отказался отвечать на вопросы учителя.

Требования к уровню подготовки обучающихся

В результате изучения геометрии 8 класса ученик должен

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • в простейших случаях строить сечения и развертки пространственных тел;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  • вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения геометрических задач с использованием тригонометрии;

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

График проведения контрольных работ

8 класс

Тема

Дата планир.

Дата фактич.

1

Контрольная работа № 1 «Четырёхугольники»



2

Контрольная работа № 2 «Площади фигур»



3

Контрольная работа № 3 «Подобие треугольников»



4

Контрольная работа № 4 «Решение прямоугольных треугольников»



5

Контрольная работа № 5 «Окружность»





Получите в подарок сайт учителя

Предмет: Математика

Категория: Планирование

Целевая аудитория: 8 класс

Скачать
Рабочая программа. Геометрия 8 класс

Автор: Кивиревский Иван Анатольевич

Дата: 18.02.2016

Номер свидетельства: 295368

Похожие файлы

object(ArrayObject)#864 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(68) "Рабочая программа "Геометрия" 7 класс "
    ["seo_title"] => string(41) "rabochaia-proghramma-gieomietriia-7-klass"
    ["file_id"] => string(6) "161438"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1422213099"
  }
}
object(ArrayObject)#886 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(98) "Рабочие программы по алгебре и геометрии для 7 класса "
    ["seo_title"] => string(63) "rabochiie-proghrammy-po-alghiebrie-i-ghieomietrii-dlia-7-klassa"
    ["file_id"] => string(6) "202951"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1429360111"
  }
}
object(ArrayObject)#864 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(66) "Рабочая программа. Геометрия 7 класс"
    ["seo_title"] => string(43) "rabochaia-proghramma-gieomietriia-7-klass-1"
    ["file_id"] => string(6) "295365"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1455806765"
  }
}
object(ArrayObject)#886 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(70) "Рабочая программа  11 класс математика "
    ["seo_title"] => string(41) "rabochaia-proghramma-11-klass-matiematika"
    ["file_id"] => string(6) "128032"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1415416603"
  }
}
object(ArrayObject)#864 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(107) "Рабочая программа для вечерней школы по геометрии 9 класс. "
    ["seo_title"] => string(69) "rabochaia-proghramma-dlia-viechierniei-shkoly-po-ghieomietrii-9-klass"
    ["file_id"] => string(6) "118149"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1413047017"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства