Рабочая программа геометрии 10-11 классы к учебнику Атанасян Л. С.
Рабочая программа геометрии 10-11 классы к учебнику Атанасян Л. С.
Программа составлена на основе Федерального государственного образовательного стандарта среднего общего образования. Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Рабочая программа геометрии 10-11 классы к учебнику Атанасян Л. С.»
МБОУ «Бестужеская средняя общеобразовательная школа»
Согласовано: Утверждено:
Зам. директора по УВР: Директор МБОУ «Бестужевская СОШ»
Честнейшиной Н. М. _______________ Щукина Н. А ____________________
«___» августа 2019 года «____» августа 2019 года
Согласовано: Утверждено:
Зам. директора по УВР: Директор МБОУ «Бестужевская СОШ»
Честнейшиной Н. М. _______________ Щукина Н. А ____________________
«___» августа 2020 года «____» августа 2020 года
Рабочая программа геометрии
10-11 классы
(углубленный уровень)
Сроки реализации: 2019-2021 гг.
Учитель: Илатовская Ирина
Анатольевна
высшая квалификационная категория
с. Бестужево
2019 год
1. Пояснительная записка
Программа составлена на основе Федерального государственного образовательного стандарта среднего общего образования. Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Цели:
- формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;
- развитие логического мышления, алгоритмической культуры, пространственного воображения, математического мышления и интуиции, творческих способностей, необходимых для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;
- овладение языком математики в устной и письменной форме, математическими знаниями и умениями, необходимыми для изучения школьных естественно-научных дисциплин, продолжения образования и освоения избранной специальности на современном уровне;
- воспитание средствами математики культуры личности через Знакомство с историей развития математики, эволюцией математических идей; понимания значимости математики для научно-технического прогресса.
Задачи:
1)введение терминологии и отработка умения ее грамотного использования;
2) развитие навыков изображения планиметрических фигур и простейших геометрических конфигураций;
3)совершенствование навыков применения свойств геометрических фигур как опоры при решении задач;
4)формирование умения решать задачи на вычисление геометрических величин;
5)совершенствование навыков решение задач на доказательство;
6)расширение знаний учащихся о геометрических фигурах на плоскости
Курс геометрии 10-11 классов характеризуется рациональным сочетанием логической строгости и геометрической наглядности. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса, повышается роль дедукции, степень абстрактности изучаемого материала. Учащиеся овладевают приемами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умение учащихся вычленять геометрические факты, формы и отношения в предметах и явлениях действительности, использовать язык геометрии для их описания.
Программа углублённого уровня предназначена для профильного изучения математики. При выполнении этой программы предъявляются требования, соответствующие направлению «математика для профессиональной деятельности». Вместе с тем выпускник получает возможность изучить математику на гораздо более высоком уровне, что создаст фундамент для дальнейшего серьёзного изучения математики в вузе.
Данная рабочая программа ориентирована на использование учебника: Геометрия 10-11 авторского коллектива Л. С. Атанасян и др. и др.
Класс
Количество часов в неделю
Количество учебных недель
Количество часов в год
10
2
34
68
11
2
34
68
УМК:
- Геометрия 10-11 класс Атанасян Л. С., Бутузов В. Ф. и другие 2018 год
- Дидактические материалы для 10 и 11 классов Зив Б. Г. 2018 год
- Рабочая тетрад Глазков Ю. А. Юдина И. И. 2018
- Поурочные разработки 10-11 класс Саакян С. М., Бутузов В. Ф. 2018 год
2. Планируемые результаты освоения учебного предмета.
Изучение геометрии в старшей школе даёт возможность достижения обучающимися следующих результатов.
Личностные:
1) сформированность мировоззрения, соответствующего современному уровню развития науки; критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
2) готовность и способность вести диалог с другими людьми, достигать в нём взаимопонимания, находить общие цели и сотрудничать для их достижения;
3) навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
4) готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
5) эстетическое отношение к миру, включая эстетику быта, научного и технического творчества;
6) осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем.
Метапредметные:
1) умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
2) умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
3) владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
4) готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
5) умение использовать средства информационных и коммуникационных технологий (далее — ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
6) владение языковыми средствами — умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
7) владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.
Предметные: 10 класс
Владеть геометрическими понятиями при решении задач и проведении математических рассуждений;
самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новых классах фигур, проводить в несложных случаях классификацию фигур по различным основаниям;
исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах;
решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;
уметь формулировать и доказывать геометрические утверждения;
иметь представления об аксиомах стереометрии и следствиях из них и уметь применять их при решении задач;
уметь строить сечения многогранников с использованием различных методов, в том числе и метода следов;
иметь представление о скрещивающихся прямых в пространстве и уметь находить угол и расстояние между ними;
применять теоремы о параллельности прямых и плоскостей в пространстве при решении задач;
уметь применять параллельное проектирование для изображения фигур;
уметь применять перпендикулярности прямой и плоскости при решении задач;
владеть понятиями ортогональное проектирование, наклонные и их проекции, уметь применять теорему о трех перпендикулярах при решении задач;
владеть понятиями расстояние между фигурами в пространстве, общий перпендикуляр двух скрещивающихся прямых и уметь применять их при решении задач;
владеть понятием угол между прямой и плоскостью и уметь применять его при решении задач;
владеть понятиями двугранный угол, угол между плоскостями, перпендикулярные плоскости и уметь применять их при решении задач;
владеть понятиями призма, параллелепипед и применять свойства параллелепипеда при решении задач;
владеть понятием прямоугольный параллелепипед и применять его при решении задач;
владеть понятиями пирамида, виды пирамид, элементы правильной пирамиды и уметь применять их при решении задач;
иметь представление о теореме Эйлера,правильных многогранниках;
владеть понятием площади поверхностей многогранников и уметь применять его при решении задач;
В повседневной жизни и при изучении других предметов:
составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат
Иметь представление об аксиоматическом методе;
владеть понятием геометрические места точек в пространстве и уметь применять их для решения задач;
уметь применять для решения задач свойства плоских и двугранных углов, трехгранного угла, теоремы косинусов и синусов для трехгранного угла;
владеть понятием перпендикулярное сечение призмы и уметь применять его при решении задач;
иметь представление о двойственности правильных многогранников;
владеть понятиями центральное и параллельное проектирование и применять их при построении сечений многогранников методом проекций;
иметь представление о развертке многогранника и кратчайшем пути на поверхности многогранника;
Предметные: 11 класс
Геометрия
владеть понятиями тела вращения (цилиндр, конус, шар и сфера), их сечения и уметь применять их при решении задач;
владеть понятиями касательные прямые и плоскости и уметь применять из при решении задач;
иметь представления о вписанных и описанных сферах и уметь применять их при решении задач;
владеть понятиями объем, объемы многогранников, тел вращения и применять их при решении задач;
иметь представление о развертке цилиндра и конуса, площади поверхности цилиндра и конуса, уметь применять их при решении задач;
иметь представление о площади сферы и уметь применять его при решении задач;
уметь решать задачи на комбинации многогранников и тел вращения;
иметь представление о подобии в пространстве и уметь решать задачи на отношение объемов и площадей поверхностей подобных фигур.
В повседневной жизни и при изучении других предметов:
составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат
иметь представление о конических сечениях;
иметь представление о касающихся сферах и комбинации тел вращения и уметь применять их при решении задач;
применять при решении задач формулу расстояния от точки до плоскости;
владеть разными способами задания прямой уравнениями и уметь применять при решении задач;
применять при решении задач и доказательстве теорем векторный метод и метод координат;
иметь представление об аксиомах объема, применять формулы объемов прямоугольного параллелепипеда, призмы и пирамиды, тетраэдра при решении задач;
применять теоремы об отношениях объемов при решении задач;
применять интеграл для вычисления объемов и поверхностей тел вращения, вычисления площади сферического пояса и объема шарового слоя;
иметь представление о движениях в пространстве: параллельном переносе, симметрии относительно плоскости, центральной симметрии, повороте относительно прямой, винтовой симметрии, уметь применять их при решении задач;
иметь представление о площади ортогональной проекции;
иметь представление о трехгранном и многогранном угле и применять свойства плоских углов многогранного угла при решении задач;
иметь представления о преобразовании подобия, гомотетии и уметь применять их при решении задач;
уметь решать задачи на плоскости методами стереометрии;
уметь применять формулы объемов при решении задач
Оценка письменных контрольных работ обучающихся по математике. Ответ оценивается отметкой «5», если: работа выполнена полностью; в логических рассуждениях и обосновании решения нет пробелов и ошибок; в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала). Отметка «4» ставится в следующих случаях: работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки); допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки). Отметка «3» ставится, если: допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится, если: допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
Оценка устных ответов обучающихся по математике
Ответ оценивается отметкой «5», если ученик: полно раскрыл содержание материала в объеме, предусмотренном программой и учебником; изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности; правильно выполнил рисунки, чертежи, графики, сопутствующие ответу; показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания; продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков; отвечал самостоятельно, без наводящих вопросов учителя; возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя. Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков: в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа; допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя; допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя. Отметка «3» ставится в следующих случаях: неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке учащихся» в настоящей программе по математике); имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя; ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме; при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков. Отметка «2» ставится в следующих случаях: не раскрыто основное содержание учебного материала; обнаружено незнание учеником большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя
Промежуточная аттестация – Контрольный тест
Тематика практической части.
10 класс
№п\п
Дата проведения
тема
По плану
фактически
1
Контрольная работа №1 по теме: «Параллельность прямых, прямой и плоскости»
2
Контрольная работа №2 по теме: «Параллельность плоскостей»
3
Контрольная работа №3 по теме: «Перпендикулярность прямых плоскостей»
4
Контрольная работа №4 по теме: «Многогранники»
5
Контрольный тест
11 класс
№п\п
Дата проведения
тема
По плану
фактически
1
Контрольная работа №1 по теме: «Метод координат в пространстве»
2
Контрольная работа №2 по теме: «Цилиндр, конус, шар»
- Основные понятия стереометрии (точка, прямая, плоскость, пространство). Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью. Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла. Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми. Параллельное проектирование. Ортогональное проектирование. Изображение пространственных фигур.
- Понятие об аксиоматическом способе построения геометрии. Площадь ортогональной проекции многоугольника. Центральное проектирование.
Многогранники.
- Вершины, ребра, грани многогранника. Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб. Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида. Симметрии в кубе, в параллелепипеде. Примеры симметрий в окружающем мире. Сечения многогранников. Построение сечений. Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).
- Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера. Симметрия в призме и пирамиде. понятие о симметрии в пространстве (центральная, осевая, зеркальная).
Тела и поверхности вращения
- Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Шар и сфера, их сечения, касательная плоскость к сфере.
- Осевые сечения и сечения параллельные основанию. Эллипс, гипербола, парабола, как сечения конуса. Сфера, вписанная в многогранник; сфера, описанная около многогранника. Цилиндрические и конические поверхности.
Объемы тел и площади их поверхностей
- Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.
- Понятие об объеме тела. отношение объемов подобных тел.
Координаты и векторы
- Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы. Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.
- Уравнение плоскости. Формула расстояния от точки до плоскости.
Геометрия на плоскости
- Свойство биссектрисы угла треугольника. Решение треугольников. Вычисление биссектрис, медиан, высот, радиусов вписанной и описанной окружностей. Формулы площади треугольника: формула Герона, выражение площади треугольника через радиус вписанной и описанной окружностей. Вычисление углов с вершиной внутри и вне круга, угла между хордой и касательной. Теорема о произведении отрезков хорд. Теорема о касательной и секущей. Теорема о сумме квадратов сторон и диагоналей параллелограмма. Вписанные и описанные многоугольники. Свойства и признаки вписанных и описанных четырёхугольников. Геометрические места точек. Решение задач с помощью геометрических преобразований и геометрических мест.
- Теорема Чевы и теорема Менелая. Эллипс, гипербола, парабола как геометрические места точек. Неразрешимость классических задач на построение.
4. Тематическое планирование.
10 класс
Название блока/раздела/модуля
Название темы
Количество часов
Количество контрольных работ
Введение - 3 часа
Предмет стереометрии. Аксиомы
стереометрии.
1
-
Некоторые следствия из аксиом
1
Решение задач
1
Параллельность прямых и плоскостей - 16 часов
Параллельность прямых. Прямой и плоскости.
3
2
Взаимное расположение прямых в пространстве. Угол между двумя прямыми.
2
Параллельность плоскостей
4
Тетраэдр и параллелепипед
4
Урок обобщения и систематизации знаний
1
Перпендикулярность
прямых и плоскостей – 16 часов
Перпендикулярность прямой и плоскости
5
1
Перпендикуляр и наклонные. Угол между прямой и плоскостью
5
Двугранный угол. Перпендикулярность плоскостей
4
Урок обобщения и систематизации знаний
1
Многогранники - 14 часов
Понятие многогранника. Призма.
4
1
Пирамида
4
Правильные многогранники
4
Урок обобщения и систематизации знаний
1
Некоторые сведения из планиметрии – 10 часов
Углы и отрезки, связанные с окружностью
3
Решение треугольников
3
Теоремы Менелая и Чевы
2
Эллипс, гипербола и парабола
2
Повторение. Решение задач - 9 часов
1
11 класс
Название блока/раздела/модуля
Название темы
Количество часов
Количество контрольных
работ
Векторы в пространстве – 6 часов
Понятие вектора в пространстве
2
-
Сложение и вычитание векторов. Умножение вектора на число
2
Компланарные векторы
2
Метод координат в пространстве. Движения –
15 часов
Координаты точки. Координаты вектора
4
1
Скалярное произведение векторов
6
Движения
3
Урок обобщения и систематизации знаний
1
Цилиндр, конус, шар – 16 часов
Цилиндр
3
1
Конус
4
Шар
7
Урок обобщения и систематизации знаний
1
Объемы тел – 17часов
Объем прямоугольного параллелепипеда
2
1
Объем прямой призмы и цилиндра
3
Объем наклонной призмы, пирамиды и конуса
5
Объем шара и площадь сферы
5
Урок обобщения и систематизации знаний
1
Центральные тенденции
2
Меры разброса
3
Урок обобщения и систематизации знаний
1
Повторение – 14 часов
1
Календарно-тематическое планирование. 10 класс.
№п/п
Дата по плану
Дата факт.
Тема урока
Практическая часть
Введение - 3 часа
1
Предмет стереометрии. Аксиомы стереометрии.
2
Некоторые следствия из аксиом
Сам работа
3
Решение задач
Параллельность прямых и плоскостей - 16 часов
1
Параллельность прямых в пространстве. Параллельность трёх прямых.
2
Параллельность прямой и плоскости
3
Решение задач.
Сам работа
4
Скрещивающиеся прямые
5
Угол между двумя прямыми.
6
Урок обобщения и систематизации знаний
7
Контрольная работа №1 по теме: «Параллельность прямых, прямой и плоскости»
8
Параллельные плоскости
9
Свойства параллельных плоскостей
10
Решение задач
Сам работа
11
Тетраэдр
12
Параллелепипед
13
Решение задач
Сам работа
14
Задачи на построение сечений
15
Урок обобщения и систематизации знаний
16
Контрольная работа №2 по теме: «Параллельность плоскостей»
Перпендикулярность прямых и плоскостей – 16 часов
1
Перпендикулярные прямые в пространстве
2
Параллельные прямые, перпендикулярные к плоскости
3
Признак перпендикулярности прямой и плоскости
4
Теорема о прямой, перпендикулярной к плоскости
5
Решение задач
Сам работа
6
Расстояние от точки до плоскости
7
Теорема о трех перпендикулярах
8
Решение задач
Сам работа
9
Угол между прямой и плоскостью
10
Решение задач
Сам работа
11
Двугранный угол
12
Признак перпендикулярности двух плоскостей
13
Прямоугольный параллелепипед
Сам работа
14
Трехгранный угол. Многогранный угол
15
Урок обобщения и систематизации знаний
16
Контрольная работа №3 по теме: «Перпендикулярность прямых плоскостей»
Многогранники - 14 часов
1
Понятие многогранника. Геометрическое тело. Теорема Эйлера
2
Призма
3
Решение задач
Сам работа
4
Пространственная теорема Пифагора
5
Пирамида
6
Правильная пирамида
7
Решение задач
Сам работа
8
Усеченная пирамида
9
Симметрия в пространстве
10
Понятие о правильных многогранниках
11
Элементы симметрии правильных многогранников
12
Решение задач
Сам работа
13
Урок обобщения и систематизации знаний
14
Контрольная работа №4 по теме: «Многогранники»
Некоторые сведения из планиметрии – 10 часов
1
Угол между касательной и хордой. Две теоремы об отрезках, связанных с окружностью