kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Использование английского языка на уроке физики

Нажмите, чтобы узнать подробности

Данный материал показывает как можно использовать английский язык на уроке физики. 

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Использование английского языка на уроке физики»

Использование английского языка на уроках физики

( В рамках темы « Термодинамика. Паровые двигатели»)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Промышленный переворот – это скачок в развитии производительных сил, заключающийся в переходе мануфактуры к машинному производству с 60-х годах 18 века по 20-е годы 19 века в Англии. Затем до конца 19 века в разное время на путь промышленного переворота вступили Россия, США, Франция, Италия, Япония. В результате этого окончательно утвердился капитализм.

В 18 веке Великобритания из аграрной страны превратилась в первую промышленную страну мира. Изобретения, изменившие мир, появились в период примерно с 1760 по 1830 гг., получивший название «промышленной революции». Почему это произошло именно в Великобритании? Здесь было меньше консерватизма, чем в других странах Европы, а усовершенствования в сельском хозяйстве сократили число людей, потребное для обеспечения страны продовольствием, и высвободили рабочую силу для промышленности.

В 18 веке улучшились транспортные системы. Было построено много каналов и улучшенных дорог, появились и железные дороги, пока ещё с конной тягой. К концу столетия инженеры стали широко заменять дерево сталью при сооружении мостов, машин и зданий. Машины, например механические прялки, заменили много живых людей. Машины были дорогими, по карману лишь немногим фабрикантам. Ручные пряхи-надомницы остались без работы, и производство сосредоточилось на фабриках.

Паровая машина, как универсальный двигатель, создана Джеймсом Уаттом в 1774-84 гг. Паровая машина сыграла решающую роль в Промышленной революции. Производство получило большое количество энергии, что вызвало его бурный рост. Например, её использовали для приведения в движение судов. В 1804 году Ричард Тревитик построил первый локомотив. И впоследствии за несколько десятков лет пароход и железная дорога коренным образом изменили всю систему наземного и водяного транспорта.

В 18 веке английский изобретатель Томас Ньюкомен (1663-1729) запряг в работу новую силу - пар. В Англии становилось всё больше шахт, мощности водяных колёс уже не хватало для откачки воды из них. Ньюкомен решил эту проблему, создав атмосферную паровую машину. До него Дени Папен уже открыл, что пар, конденсируясь, создаёт вакуум, способный всасывать поршень в цилиндр, но неизвестно, знал ли Ньюкомен о трудах Папена. Первая известная машина Ньюкомена была построена в 1712 году и откачивала воду из угольной шахты. В 1730-е гг. машины Ньюкомена работали в нескольких странах. Однако они были мало эффективны и годились только для откачки. Джеймс Уатт (1736-1819) в 1760-е гг. понял причину неэффективности машин Ньюкомена: в этих машинах пар конденсировался прямо в цилиндре. Уатт изобрёл машину с отдельным конденсатором, а в 1782 г. – вариант этой машины, создававший не качание, а вращение. С тех пор и фабрики освободились от реки: им не нужны стали водяные колёса.

В первой половине 19 века Великобритания стала мастерской мира. Новые станки и инструменты позволили английским инженерам строить передовые машины всех видов. Материалы, даваемые мощной металлургией, и сила паровых машину увеличивали поток изобретений. Паровая машина высокого давления, созданная Ричардом Тревитиком, и стальные рельсы породили железнодорожный транспорт. Пароходы ускорили океанские плавания. Стальные мосты легли через широкие реки. Транспортная революция «сделала мир меньше».

Промышленная революция произошла в одну и ту же историческую эпоху с Американской и Французской революциями. Хотя это сразу не стало очевидным, сегодня мы можем понять, что Промышленной революции суждено было оказать значительно большее влияние на повседневную жизнь людей, чем любой из этих исторических политических революций. И поэтому Джеймса Уатта мы с полным основанием можем считать одной из самых значительных личностей истории.

Будучи первым и до конца 19 в. практически единственным универсальным двигателем, она сыграла исключительную роль в процессе промышленности и транспорта.

К середине 70-х годов 20 в. паровые механизмы ещё сохранялись на пароходах, локомобилях, пароходах. К 21 веку их можно встретить в музеях и на киностудиях.

Предпосылки:

Золото Френсиса Дрейка;

«Огораживание»;

Наличие у купцов-предпринимателей большого количества денег;

Финансовая реформа, меркантилизм и протекционизм Стюартов.

В ходе урока проводится показ презентации.

Цели:

- углубление и расширение (развитие) знаний по теме или проблеме учащихся по физике;

- закрепить изученный материал в ходе подготовки рефератов;

- синтезировать знания по физике и английскому языку;

- развить навыки говорения на английском языке с применением монологической и диалогической речи;

- развить коммуникативные способности с использованием английского языка.

Задачи:

- в интересной форме обобщить, закрепить знания, полученные по теме;

- научить видеть проявления изученных законов физики;

- дать представление о роли науки физики в развитии НТР;

- показать как наука и техника влияют на ход истории;

- освоить употребление специфической английской терминологии по теме;

- расширить кругозор у учащихся.

Оборудование: проекционный аппарат, экран, компьютер, макет ДВС

Программное обеспечение: видеофильм, презентация, виртуальная школа Кирилла и Мефодия (уроки физики и английского языка)

Ход урока (сценарий)

Организационный момент. Слово учителя физики.

Приветствие учащихся, проверка состава, мобилизация внимания учащихся. Учитель сообщает тему урока, цель и план занятия.

Сегодня у нас необычный урок: урок физики на английском языке. Я надеюсь, что на этом уроке мы углубим наши знания об использовании физических знаний при создании тепловых машин, о влиянии развития техники на экономику и политику страны (Англии) в 17-19 вв..

Основная часть.

А) Демонстрация видеофильма на 3-5 минут.Краткое повторение материала по теме «Изменение внутренней энергии в процессе совершения работы. Тепловые двигатели». Учитель предлагает учащимся вспомнить

1) Законы термодинамики. Учащийся делает сообщение на английском языке о Роберте Майере и о формулировании 1 закона термодинамики. ( демонстрация слайда)

2) Работа в тепловых машинах. (демонстрация слайда)

3) Блок-схема теплового двигателя. (демонстрация слайда)

4) КПД теплового двигателя. (демонстрация слайда)

5) использование тепловых двигателей в современном мире. (демонстрация слайда)

Б) Сообщение учителя английского языка о начале и развитии промышленной революции в Англии.

В начале сообщения учитель на английском языке задает вопросы учащимся о примерном периоде Промышленной революции и ее причинах. Затем следует сообщение учителя для уточнения и обобщения по этому вопросу.

«The Industrial Revolution was a period in the late 18th and early 19th centuries when major changes in agriculture, manufacturing, production, and transportation had a profound effect on the socioeconomic and cultural conditions in Britain. The changes subsequently spread throughout Europe, North America, and eventually the world. The onset of the Industrial Revolution marked a major turning point in human society; almost every aspect of daily life was eventually influenced in some way.

In the later part of the 1700s there occurred a transition in parts of Great Britain\'s previously manual-labour-based economy towards machine-based manufacturing. It started with the mechanisation of the textile industries, the development of iron-making techniques and the increased use of refined coal. Trade expansion was enabled by the introduction of canals, improved roads and railways. The introduction of steam power fuelled primarily by coal, wider utilization of water wheels and powered machinery (mainly in textile manufacturing) underpinned the dramatic increases in production capacity. The development of all-metal machine tools in the first two decades of the 19th century facilitated the manufacture of more production machines for manufacturing in other industries.

The debate about the start of the Industrial Revolution also concerns the massive lead that Great Britain had over other countries. Alternatively, the greater liberalization of trade from a large merchant base may have allowed Britain to produce and use emerging scientific and technological developments more effectively than countries with stronger monarchies, particularly China and Russia. Britain emerged from the Napoleonic Wars as the only European nation not ravaged by financial plunder and economic collapse, and possessing the only merchant fleet of any useful size (European merchant fleets having been destroyed during the war by the Royal Navy). This was further aided by Britain's geographical position — an island separated from the rest of mainland Europe.

Another theory is that Britain was able to succeed in the Industrial Revolution due to the availability of key resources it possessed. It had a dense population for its small geographical size. Enclosure of common land and the related Agricultural Revolution made a supply of this labour readily available. There was also a local coincidence of natural resources in the North of England, the English Midlands, South Wales and the Scottish Lowlands. Local supplies of coal, iron, lead, copper, tin, limestone and water power, resulted in excellent conditions for the development and expansion of industry. Also, the damp, mild weather conditions of the North West of England provided ideal conditions for the spinning of cotton, providing a natural starting point for the birth of the textiles industry.

The stable political situation in Britain from around 1688, and British society's greater receptiveness to change (compared with other European countries) can also be said to be factors favouring the Industrial Revolution. In large part due to the Enclosure movement, the peasantry was destroyed as significant source of resistance to industrialization, and the landed upper classes developed commercial interests that made them pioneers in removing obstacles to the growth of capitalism.As John Hicks, a Nobel prize winner in economics supposes, the main factors of the industrial revolution in England were the following:

Forming institutions defending private property and contractual obligations, particularly, independent and effective judicial system;

A high level of trade’s development;

Land trade became free of feudal limitations;

Wide usage of wage labour and impossibility of a large-scale usage of forced labour;

And now let’s listen to the reports made by our pupils about the pioneers of the Industrial Revolution, those people who devoted their lives to the progress.

В) Учащиеся делают сообщения по следующим темам:

- Denis Papin and his inventions; (демонстрация слайда)

Denis Papin, (b. Aug. 22, 1647, Blois, Fr.—d. c. 1712, London, Eng.), French-born British physicist who invented the pressure cooker and suggested the first cylinder and piston steam engine. Though his design was not practical, it was improved by others and led to the development of the steam engine, a major contribution to the Industrial Revolution.

Papin assisted the Dutch physicist Christiaan Huygens with his air-pump experiments and went to London in 1675 to work with the English physicist Robert Boyle. In 1679 Papin invented his steam digester (pressure cooker), a closed vessel with a tightly fitting lid that confines the steam until a high pressure is generated, raising the boiling point of the water considerably. A safety valve of his own invention prevented explosions. Observing that the enclosed steam in his cooker tended to raise the lid, Papin conceived of the use of steam to drive a piston in a cylinder, the basic design for early steam engines; he never built an engine of his own, however.

In 1705 the German physicist and philosopher Gottfried Wilhelm Leibniz sent Papin a sketch of the first practical steam engine, built by Thomas Savery of England. That sketch stimulated Papin to further work, culminating in his Ars Nova ad Aquam Ignis Adminiculo Efficacissime Elevandam (1707; “The New Art of Pumping Water by Using Steam”). In 1709 he built a man-powered paddle-wheel boat that successfully demonstrated the practicability of using the paddle wheel in place of oars on steam-driven ships. Later that same year Papin returned to London, where he lived in obscurity until his death.

Thomas Newcomen and the first practical steam engine; (демонстрация слайда)

Newcomen was an ironmonger by profession, but made a significant contribution to the Industrial Revolution with his invention of the atmospheric steam engine.

Thomas Newcomen was born in Dartmouth, Devon in 1663 and established himself as an ironmonger in his home town. Some of his biggest customers were Cornish tin mine owners, who faced considerable difficulties with flooding as mines became progressively deeper. The standard methods to remove the water - manual pumping or teams of horses hauling buckets on a rope - were slow and expensive, and they sought an alternative.
Contemporary engines worked by using condensed steam to make a vacuum, but whereas Thomas Savery's pump of 1698 had just used the vacuum to pull the water up, Newcomen created his vacuum inside a cylinder and used it to pull down a piston. He then used a lever to transfer the force to the pump shaft that went down the mine. It was the first practical engine to use a piston in a cylinder. Casting the cylinders and getting the pistons to fit was pushing the limit of existing technology, so Newcomen deliberately made the piston marginally smaller than the cylinder and sealed the gap with a ring of wet leather or rope. To avoid infringing Savery's patent Newcomen was forced to go into partnership with him. 

His first working engine was installed at a coalmine at Dudley Castle in Staffordshire in 1712. It had a cylinder 21 inches in diameter and nearly eight feet long, and it worked at twelve strokes a minute, raising ten gallons of water from a depth of 156 feet - approximately 5.5 horse power. The engines were rugged and reliable and worked day and night, but were extremely inefficient. 

Newcomen engines were very expensive but were nevertheless very successful. By the time Newcomen died on 5 August 1729 there were at least one hundred of his engines in Britain and across Europe. 

- James Watt; (демонстрация слайда)

Watt was a Scottish inventor and mechanical engineer, renowned for his improvements in steam engine technology.

James Watt was born in Greenock on 18 January 1736. His father was a prosperous shipwright. Watt initially worked as a maker of mathematical instruments, but soon became interested in steam engines.

The first working steam engine had been patented in 1698 and by the time of Watt's birth, Newcomen engines were pumping water from mines all over the country. In around 1764, Watt was given a model Newcomen engine to repair. He realised that it was hopelessly inefficient and began to work to improve the design. He designed a separate condensing chamber for the steam engine that prevented enormous losses of steam. His first patent in 1769 covered this device and other improvements on Newcomen's engine.
Watt's partner and backer was the inventor John Roebuck. In 1775, Roebuck's interest was taken over by Matthew Boulton who owned an engineering works in Birmingham. Together he and Watt began to manufacture steam engines. Boulton & Watt became the most important engineering firm in the country, meeting considerable demand. Initially this came from Cornish mine owners, but extended to paper, flour, cotton and iron mills, as well as distilleries, canals and waterworks. In 1785, Watt and Boulton were elected fellows of the Royal Society.
By 1790, Watt was a wealthy man and in 1800 he retired and devoted himself entirely to research work. He patented several other important inventions including the rotary engine, the double-action engine and the steam indicator, which records the steam pressure inside the engine. 
Watt died on 19 August 1819. A unit of measurement of electrical and mechanical power - the watt - is named in his honour.

- James Hargreaves; (демонстрация слайда)


James Hargreaves (1720 – 22 April 1778), was a weaver, carpenter and an inventor in Lancashire, England. He is credited with inventing the spinning Jenny in 1764.

Born at Knuzden Brook near Stanhill, Oswaldtwistle in Lancashire, he lived at Blackburn, then a town with a population of about 5,000, known for the production of "Blackburn greys," cloths of linen Warp and cotton weft. They were usually sent to London to be printed. The demand for cotton yarn outstripped supply, and the one-thread spinning wheel could not keep up.

Model of the spinning jenny in a museum in Wuppertal, Germany

The idea for the spinning jenny is said to have come from the inventor seeing a one-thread wheel overturned upon the floor, when both the wheel and the spindle continued to revolve. He realised that if a number of spindles were placed upright and side by side, several threads might be spun at once. The spinning jenny was confined to producing cotton weft, it was unable to produce yarn of sufficient quality for the warp. High quality warp was later supplied by Arkwright\'s spinning frame.
The jenny was initially welcomed by the hand spinners, but when the price of yarn fell the mood changed. 

Opposition to the machine caused Hargreaves to leave for Nottingham, where the cotton hosiery industry benefited from the increased provision of suitable yarn. Arkwright also ended up in the town, and was even more successful. Hargreaves made «jennies» for a man called Shipley, and on 12 June 1770, he was granted a patent, which enabled him to take legal action against the Lancashire manufacturers who had begun using it. Although he failed in this, Hargreaves' business was carried on until his death in 1778, the year before that in which Samuel Crompton invented the spinning mule.

- Richard Arkwright; (демонстрация слайда)


Arkwright is considered the father of the modern industrial factory system and his inventions were a catalyst for the Industrial Revolution.

Richard Arkwright was born in Preston in 1732, the son of a tailor. Money was not available to send him to school, but his cousin Ellen taught him to read and write.

He began working as an apprentice barber and it was only after the death of his first wife that he became an entrepreneur. His second marriage to Margaret Biggins in 1761 brought a small income that enabled him to expand his barber's business. He acquired a secret method for dyeing hair and travelled around the country purchasing human hair for use in the manufacture of wigs. During this time he was often in contact with weavers and spinners and when the fashion for wearing wigs declined, he looked to mechanical inventions in the field of textiles to make his fortune.
By 1767, a machine for carding cotton had been introduced into England and James Hargreaves had invented the spinning jenny. With the help of a clockmaker, John Kay, who had been working on a mechanical spinning machine, Arkwright made improvements that produced a stronger yarn and required less physical labour. His new carding machine was patented in 1775.
Arkwright's fortunes continued to rise and he constructed a horse-driven spinning mill at Preston - the first of many. He developed mills in which the whole process of yarn manufacture was carried on by one machine and this was further complimented by a system in which labour was divided, greatly improving efficiency and increasing profits. Arkwright was also the first to use James Watts' steam engine to power textile machinery, though he only used it to pump water to the millrace of a waterwheel. From the combined use of the steam engine and the machinery, the power loom was eventually developed.
From 1775, a series of court cases challenged Arkwright's patents as copies of others work, and they were revoked in 1785. Nonetheless, Arkwright was knighted in 1786 and by the time of his death on 3 August 1792, Arkwright had established factories in Derbyshire, Staffordshire, Lancashire and Scotland, and was a wealthy man. 
- George Stephenson; (демонстрация слайда)
George Stephenson was an English engineer who built the first public railway line in the world to use steam locomotives and is known as the "Father of Railways". His rail gauge [geidз]of 4 feet 8½ inches is sometimes called "Stephenson gauge", is the world's standard gauge. 
George Stephenson was born on the 9th of June 1781 in Northumberland. He was the second child of the parents, who couldn’t read or write. At 17 George realized the value of education and paid to study at night school to learn reading, writing and arithmetic. In 1801 he began work at colliery as a ‘brakesman’. In 1811 the pumping engine at the colliery was not working properly and Stephenson offered to fix it. He did so with such success that he was soon promoted to enginewright for the neighbouring collieries, responsible for repairing all the engines. He soon became an expert in steam-driven machinery.

Stephenson designed his first locomotive in 1814, a travelling engine designed for hauling coal on the Killingworth wagon-way, and named after the Prussian general. This locomotive could haul 30 tons of coal up a hill at 4 mile per hour, and was the first successful flanged-wheel locomotive: its traction depended only on the contact between its flanged wheels and the rail. Altogether, Stephenson produced 16 locomotives at Killingworth. 

The new engines were too heavy to be run on wooden rails, and iron rails were not very good yet. Stephenson improved the design of iron rails to reduce breakage. He experimented with a 'steam spring' (to balance the weight using steam pressure), but soon followed the new practice of 'distributing' weight by utilizing a number of wheels. Stephenson was hired to build an 8-mile railway in 1820. It was the first railway using no animal power.

In 1821, a parliamentary bill was passed to allow the building of the Stockton and Darlington Railway (S&DR). The 25-mile railway was intended to connect various collieries situated at Stockton, passing through Darlington on the way. That same year construction of the line began.

A manufacturer was now needed to provide the locomotives for the new line. Stephenson and his partner established a company in Newcastle to manufacture locomotives. The rails used for the new line were iron, could be produced in much longer lengths and were much less liable for heavy locomotives. The gauge that Stephenson chose for the line was 4 feet 8½ inches, and became the standard gauge for railways, not only in Britain, but in the whole world. 

The L&MR (Liverpool and Manchester Railroad) was completed in 1829, its directors set up a competition to decide who would build its locomotives, and it was held in October 1829. Locomotives could weigh no more than six tons and had to travel for a total distance of 60 miles. Stephenson's entry was Rocket, and its performance in winning the contest made it famous. The opening of the L&MR, on the 15th of September 1830, was a great event, attracting persons from the government and industry, including the Prime Minister, the Duke of Wellington. The day started with a procession of eight trains setting out from Liverpool. The parade was led by “Northumbrian” driven by George Stephenson, and included “Phoenix” driven by his son Robert, “North Star” driven by his brother and “Rocket” driven by an assistant engineer Joseph Locke. The day was marred by the death of William Huskisson, the Member of Parliament for Liverpool, who was killed by Rocket, but the railway was a great success. Stephenson became famous, and became the chief engineer for a wide variety of other railways. 

The next ten years were the busiest of Stephenson’s life. Many of the first American railroad builders came to Newcastle to learn from Stephenson. Stephenson was offered more work than he could manage with. He worked on several railway lines. He was the first president of the Institution of Mechanical Engineers on its formation in 1847.

Britain led the world in the development of railways and this was a stimulus for the industrial revolution, by transporting quickly raw materials and goods. George Stephenson cannot claim to have invented the locomotive. Richard Trevithick deserves that credit. George Stephenson, with his work on the Stockton and Darlington Railway and the Liverpool and Manchester Railway, paved the way for the railway engineers who were to follow, such as his son Robert and his assistant Joseph Locke .These men were following his footsteps. Stephenson realized that the individual lines would join together, and would need to have the same gauge. The standard gauge used all over the world is due to him.
Итог урока. Закрепление материала.

Какие выводы и рекомендации следует сделать из урока?

Обсуждение содержания урока. Рекомендации для чтения дополнительной литературы.

Литература.

  1. Новый энциклопедический словарь, «Большая Российская энциклопедия», М., 2008.

  2. Майкл Х. Харт «100 великих людей», М., «Вече», 2001.

  3. К.В. Рыжов «100 великих изобретений», М., «Вече», 2000.

  4. Энциклопедия для детей, т.8, 16(Астрономия, Физика), М., «Аванта+», 2000.

  5. Д. Салариа, П. Тэрвей Изобретения, М., «Росмэн», 1994.

  6. Jennifer Tann, Watt, James (1736-1819), Oxford Dictionary of National Biography, Oxford University Press, Sept 2004;

  7. Chapman, S. D. «The early factory masters: the transition to the factory system in the midlands textile industry» (1967) 

6. Приложение. Информационная часть к сценарию урока.


Дата


События в науке и технике в Англии


Дата


Ист. события 

1600


1645


1660


1665

1668


1690


1698


1705


1712


1759

1763-

1764

1765


1766


1769


1771


1776

1779

1783


1784

1784

1786


1787

1789

1794


1800


1801-

1803


1812


1814

1817

1818

1819

1821

1822

1825


1829

Френсис Бэкон предложил метод исследования мира от конкретных наблюдений и экспериментов к более общимЭтот метод перехода от частного к общему получил название индукции (от лат. Induction – «наведение»).

Возникла неформальная группа учёных Лондона и Оксфорда, названная «невидимый колледж». Среди наиболее знаменитых членов этого кружка были Роберт Бойль (1627-1691), математик Джон Валлис (1616-1703), учёный универсал Роберт Гук (1635-1703).

«Невидимый колледж» преобразован в знаменитое Лондонское королевское общество. Король объявил себя поборником точных наук и покровителем нового общества. Это немало способствовало росту престижа физических исследований.

Роберт Гук усовершенствовал микроскоп.

Публикация работы И. Ньютона «Математические начала натурфилософии» с изложением его научных исследований.

Дени Папен (француз) (1647-1714) в Лондоне установил, что вакуум может двигать поршень, создал автоклав (паровой котёл с предохранительным клапаном) и паровой насос для откачки воды из глубоких шахт.

И. Ньютона назначен директором Монетного двора. Предлагает путь реформирования финансовой системы страны.

Насос Томас Севери (1650-1715) изобрёл паровую машину для откачки воды из шахт.

Томас Ньюкомен (1663-1729) создаёт паровую машину мощностью около 4 кВт (с КПД = 1%), в которой работу совершает атмосферное давление. Эта машина выкачивает воду из шахты с глубины 50 м. Машина получила широкое распространение в 18 в.

Смиттон построил в Эддистоне маяк.

Джеймс Уатт (1736-1819) в Глазго изучает и чинит машину Ньюкомена и создаёт универсальный тепловой двигатель.

Джеймс Харгривс сконструировал прядильную машину периодического действия «Дженни». Получила широкое распространение в 18 в.

Д. Уатт оформляет патент на экспериментальную паровую машину.

Кавендиш открыл водород (легче воздуха), что позволило создать аэростаты.

Цирюльник Аркрайт изобрёл первую удачную прядильную машину, которая автоматически делала прочные нити из хлопка и шерсти.

Аркрайт открывает вторую фабрику в Кромфорде, где все машины приводились в движение водяным колесом.

Фабричное производство паровых машин.

Построен первый стальной мост возле Колбрукдэйла.

Генри Корт пускает прокатный стан для фасонного железа (проволока через вальцы).

Использование на производстве парового молота.

Генри Корт создал пудлинговую печь для плавки чугуна в сталь.

Мердок (ученик Уатта) соорудил действующую модель паровой тележки (паромобиль). Наблюдавший за её испытаниями Тревитик, позже доработал модель и создал позже паровоз.

Американец Фитч построил пароход «Персеверанс».

Металлургический завод Блеванон в Уэльсе даёт 5400 т стали в год.

Генри Модсли, механик, на место старому токарному станку предложил высокоточный автоматический винторезный станок оснащенный суппортом, который позволил вытачивать автоматически винты и болты с любой нарезкой. Т.о. появились первые «стандартные» изделия.

В Англии работает 321 паровая машина во всех сферах производства, особенно на ткацких и суконных фабриках.

Построены первые удачные пароходы.

Ричард Тревитик построил безрельсовую паровую повозку и 

машину высокого давления - первый локомотив (m=5т, v=8км/ч), который тащил 5 вагонов в 25 тонн.

Джордж Стефенсон строит паровоз «Блюхер», который работает по обслуживанию рудника (перевозил грузы m=30,5т со v=8км/ч). Т.О. положил начало паровому ж.-д. транспорту.

Джордж Стефенсон строит паровозы.

Строгальный станок.

Уитни придумал фрезерный станок.

В Англию впервые прибыл пароход («Саванна») из Америки.

Майкл Фарадей (1791-1867) изобрёл первый электрический мотор.

Черч сконструировал наборную машину для типографии.

Джордж Стефенсон пускает состав из 34 вагонов: 6 вагонов с углём и мукой, а в остальных 600 пассажиров (всего 90 т) со v=10-24 км/ч.

Построил первую ж/д общественного пользования Дарлингтон-Стоктон.

Братья Джордж и Роберт Стефенсоны построили быстрый и надёжный паровоз «Ракета».






Получите в подарок сайт учителя

Предмет: Физика

Категория: Прочее

Целевая аудитория: Прочее.
Урок соответствует ФГОС

Скачать
Использование английского языка на уроке физики

Автор: Жанахметова Алия Эрмековна

Дата: 04.01.2017

Номер свидетельства: 375221

Похожие файлы

object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(171) "Презентация к уроку физики 8 класс "Внутренняя энергия. Способы изменения внутренней энергии""
    ["seo_title"] => string(80) "prezentatsiia_k_uroku_fiziki_8_klass_vnutrenniaia_energiia_sposoby_izmeneniia_vn"
    ["file_id"] => string(6) "530170"
    ["category_seo"] => string(6) "fizika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1575451420"
  }
}
object(ArrayObject)#875 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(195) "Конспект  интегрированного урока "Путешествие по стране ИЯФ" по  физике и английскому  языку для 7-8 классов "
    ["seo_title"] => string(117) "konspiekt-intieghrirovannogho-uroka-putieshiestviie-po-stranie-iiaf-po-fizikie-i-anghliiskomu-iazyku-dlia-7-8-klassov"
    ["file_id"] => string(6) "142282"
    ["category_seo"] => string(6) "fizika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1418245735"
  }
}
object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(150) "Интегрированный урок английского языка и географии  на тему  «Животные Камчатки» "
    ["seo_title"] => string(88) "intieghrirovannyi-urok-anghliiskogho-iazyka-i-ghieoghrafii-na-tiemu-zhivotnyie-kamchatki"
    ["file_id"] => string(6) "143454"
    ["category_seo"] => string(10) "geografiya"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1418546814"
  }
}
object(ArrayObject)#875 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(104) "Прикладной курс по английскому языку "Хочу знать больше" "
    ["seo_title"] => string(59) "prikladnoi-kurs-po-anghliiskomu-iazyku-khochu-znat-bol-shie"
    ["file_id"] => string(6) "105066"
    ["category_seo"] => string(15) "angliiskiyYazik"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1402813771"
  }
}
object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(143) "Развитие полиязычия на уроках физики, при решении задач на тему "Закон Кулона" "
    ["seo_title"] => string(85) "razvitiie-poliiazychiia-na-urokakh-fiziki-pri-rieshienii-zadach-na-tiemu-zakon-kulona"
    ["file_id"] => string(6) "212809"
    ["category_seo"] => string(6) "fizika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1431937448"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства