Анықтама. А оқиғасы қолайлы жағдайлар санының (т) сынаудың тең мүмкіндікті барлық жағдайлар санын (п) қатынасын А оқиғасының ықтималдығы деп атайды және былай жазады: pA m n (1) Ықтималдықтың бұл анықтамасын классикалық анықтама дейміз. Бұдан төмендегі салдар шығады. Ақиқат оқиға ықтималдығы 1-ге тең. Шынында, оқиға ақиқат болу үшін А оқиғасына қолайлы жағдайлар саны т сынаудың барлық тең мүмкіндікті жағдайлар саны п-ге тең, яғни m=n болады. Онда (1) бойынша pU m 1 n (2) Мүмкін емес оқиға ықтималдығы нөлге тең. Шынында да, егер оқиға мүмкін емес болса, онда А оқиғасына қолайлы жағдайлар саны т нөльге тең болады. Олай болса pV 0 0 n (3) А оқиғасының ықтималдығы р(А) нөль мен бір аралығындағы оң таңбалы сан. Шынында, А оқиғасына қолайлы жағдайлар саны т нөльден п-ге дейінгі, өздерін қоса алғандағы, мәндерді қабылдайды, яғни 0 m n , 0 m 1 немесе 0 m 1 n n n n 0 pA 1 (4) 1-мысал. Жәшікте 3 ақ шар, 5 қызыл шар, 2 жасыл шар бар. Бұл шарлардың формасы және салмағы бірдей. Жәшіктен кез келген бір шар алынды. Алынған шар: а) ақ шар (А оқиғасы), ә) қызыл шар (В оқиғасы), б) жасыл шар (С оқиғасы) болу ықтималдығын анықтау керек. Шешуі: Шарлардың үлкендігі мен салмағы бірдей болғандықтан, олардың шығу мүмкіндіктері де бірдей. Бір түсті шар шыққанда екінші түсті шар пайда болмайды. Сонымен, тең мүмкіндікті қос-қостан үйлесімсіз оқиғалардың толық тобын құрайтын жағдайлар саны n=10. А оқиғасына қолайлы жағдайлар саны m=3. Демек, pA m 3 0,30 немесе 30% болады. n 10 ә) pB m 5 0,50 немесе 50% болады. n 10 б) pC m 2 0,20 немесе n 10 |