Современные направления математического развития детей дошкольного возраста
Современные направления математического развития детей дошкольного возраста
Данный материал подготовлен с целью помочь родителям разобраться в современных подходах обучения детей дошкольного возраста математике, выяснить для себя на чём основано современное обучение, какие принципы используються и чем они обусловлены.
Материал доволно прост для понимания родителей.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Современные направления математического развития детей дошкольного возраста»
Информация для родителей
Современные направления математического развития детей
Подготовила
Криочкина Светлана андреевна
Воспитатель
МАДОУ 50
Корпус 2
Г.Ревда
Свердловская область
2016 г.
В начале 90-х гг. XX в. наметилось несколько основных научных направлений в теории и методике развития математических представлений у детей дошкольного возраста.
Согласно первомунаправлению, содержание обучения и развития, методы и приемы конструировались на основе идеи преимущественного развития у детей дошкольного возраста интеллектуально-творческих способностей:
наблюдательность, познавательные интересы;
исследовательский подход к явлениям и объектам окружения (умения устанавливать связи, выявлять зависимости, делать выводы);
умение сравнивать, классифицировать, обобщать;
прогнозирование изменений в деятельности и результатах;
ясное и точное выражение мысли;
осуществление действия в виде «умственного эксперимента»
(В. В. Давыдов и др.).
Предполагались активные методы и приемы обучения и развития детей, такие как моделирование, действия трансформации (перемещение, удаление и возвращение, комбинирование), игра и другие.
Второенаправление базировалось на преимущественном развитии у детей сенсорных процессов и способностей (А. В. Запорожец, Л. А. Венгер, Н. Б. Венгер и др.):
включение ребенка в активный процесс по выделению свойств объектов путем обследования, сравнения, результативного практического действия;
самостоятельное и осознанное использование сенсорных эталонов и эталонов мер в деятельности;
использование моделирования («прочтения» моделей и действий моделирования).
При этом овладение перцептивными ориентировочными действиями, которые ведут к усвоению сенсорных эталонов, рассматривается как основа развития у детей сенсорных способностей.
Способность к наглядному моделированию выступает как одна из общих интеллектуальных способностей. Дети овладевают действиями с тремя видами моделей (модельных представлений): конкретными; обобщенными, отражающими общую структуру класса объектов; условно-символическими, передающими скрытые от непосредственного восприятия связи и отношения.
Третье теоретическое направление, на котором базируется математическое развитие детей дошкольного возраста, основано на идеях первоначального (до освоения чисел) овладения детьми способами практического сравнения величин, через выделение в предметах общих признаков, таких как масса, длинна, ширина, высота (П. Я. Гальперин, Л. С. Георгиев, В. В. Давыдов, Г. А. Корнеева, А. М. Леушина и др.).
Эта деятельность обеспечивает освоение отношений равенства и неравенства путем сопоставления. Дети овладевают практическими способами выявления отношений по величине, для которых числа не требуются. Числа осваиваются вслед за упражнениями при сравнении величин путем измерения.
Четвертое теоретическое направление основано на идее становления и развития определенного стиля мышления в процессе освоения детьми свойств и отношений (А. А. Столяр, Р. Ф. Соболевский, Т. М. Чеботаревская, Е. А. Носова и др.).
Умственные действия со свойствами и отношениями рассматриваются как доступное и эффективное средство развития интеллектуально - творческих способностей.
В процессе действий с множествами предметов, обладающих разнообразными свойствами (цветом, формой, размером, толщиной и пр.), дети упражняются в абстрагировании свойств и выполнении логических операций над свойствами тех или иных подмножеств. Специально сконструированные игры помогают детям понять точный смысл логических связок и, или, если.., то, смысл слов не, все, некоторые.
Теоретические основы современной методики развития математических представлений базируются на интеграции четырех основных направлений, а также на классических и современных идеях математического развития детей дошкольного возраста.