Пояснительная записка.
«Вдохновение нужно в геометрии, как и в поэзии»
А.С. Пушкин
В основе построения данного курса лежит идея гуманизации математического образования, соответствующая современным представлениям о целях школьного образования и ставящая в центр внимания личность ученика, его интересы и способности. В основе методов и средств обучения лежит деятельностный подход. Курс позволяет обеспечить требуемый уровень подготовки школьников, предусматриваемый государственным стандартом математического образования, а также позволяет осуществлять при этом такую подготовку, которая является достаточной для углубленного изучения математики.
Начальный курс математики объединяет арифметический, алгебраический и геометрический материалы. При этом вопросы геометрии затрагиваются очень поверхностно, на них выделяется малое количество времени для изучения. Данный дополнительный курс ставит перед собой задачу формирования интереса к предмету геометрии, подготовку дальнейшего углубленного изучения геометрических понятий. Разрезание на части различных фигур, составление из полученных частей новых фигур помогают уяснить инвариантность площади и развить комбинаторные способности. Большое внимание при этом уделяется развитию речи и практических навыков черчения. Дети самостоятельно проверяют истинность высказываний, составляют различные построения из заданных фигур, выполняют действия по образцу, сравнивают, делают выводы.
Предлагаемый факультатив предназначен для развития математических
способностей учащихся, для формирования элементов логической и алгоритмической грамотности, коммуникативных умений младших школьников с применением коллективных форм организации занятий и использованием современных средств обучения. Создание на занятиях ситуаций активного поиска, предоставление возможности сделать собственное «открытие», знакомство с оригинальными путями рассуждений, овладение элементарными навыками исследовательской деятельности позволят обучающимся реализовать свои возможности, приобрести уверенность в своих силах.
Содержание факультатива «Геометрия вокруг нас» направлено на воспитание интереса к предмету, развитию наблюдательности, геометрической зоркости, умения анализировать, догадываться, рассуждать, доказывать, умения решать учебную задачу творчески. Содержание может быть использовано для показа учащимся возможностей применения тех знаний и умений, которыми они овладевают на уроках математики.
Цель и задачи курса «Геометрия вокруг нас»
Цель: формирование всесторонне образованной и инициативной личности, владеющей системой математических знаний и умений, идейно-нравственных, культурных и этических принципов, норм поведения, которые складываются в ходе учебно-воспитательного процесса и готовят её к активной деятельности и непрерывному образованию в современном обществе:
а) обучение деятельности - умению ставить цели, организовать свою деятельность, оценивать результаты своего труда,
б) формирование личностных качеств: ума, воли, чувств, эмоций, творческих способностей, познавательных мотивов деятельности,
в) формирование картины мира.
Задачи:
Обучающие:
знакомство детей с основными геометрическими понятиями,
обеспечить прочное и сознательное овладение системой математических знаний и умений, необходимых для применения в практической деятельности, для изучения смежных дисциплин,
обеспечить интеллектуальное развитие, сформировать качества мышления, характерные для математической деятельности и необходимые для полноценной жизни в обществе,
сформировать умение учиться.
формирование умения следовать устным инструкциям, читать и зарисовывать схемы изделий,
обучение различным приемам работы с бумагой,
применение знаний, полученных на уроках природоведения, труда, рисования и других, для создания композиций с изделиями, выполненными в технике оригами.
Развивающие:
развитие внимания, памяти, логического и абстрактного мышления, пространственного воображения,
развитие мелкой моторики рук и глазомера,
развитие художественного вкуса, творческих способностей и фантазии детей,
выявить и развить математические и творческие способности.
Воспитательные:
воспитание интереса к предмету «Геометрия»,
расширение коммуникативных способностей детей,
формирование культуры труда и совершенствование трудовых навыков.
Особенности программы.
Принципы.
Принципы, которые решают современные образовательные задачи с учётом запросов будущего:
1. Принцип деятельности включает ребёнка в учебно- познавательную деятельность. Самообучение называют деятельностным подходом.
2. Принцип целостного представления о мире в деятельностном подходе тесно связан с дидактическим принципом научности, но глубже по отношению к традиционной системе. Здесь речь идёт и о личностном отношении учащихся к полученным знаниям и умении применять их в своей практической деятельности.
3. Принцип непрерывности означает преемственность между всеми ступенями обучения на уровне методологии, содержания и методики.
4. Принцип минимакса заключается в следующем: учитель должен предложить ученику содержание образования по максимальному уровню, а ученик обязан усвоить это содержание по минимальному уровню.
5. Принцип психологической комфортности предполагает снятие по возможности всех стрессообразующих факторов учебного процесса, создание в классе и на уроке такой атмосферы, которая расковывает учеников, и, в которой они чувствуют себя уверенно. У учеников не должно быть никакого страха перед учителем, не должно быть подавления личности ребёнка.
6. Принцип вариативности предполагает развитие у детей вариативного мышления, т. е. понимания возможности различных вариантов решения задачи и умения осуществлять систематический перебор вариантов. Этот принцип снимает страх перед ошибкой, учит воспринимать неудачу не как трагедию, а как сигнал для её исправления.
7. Принцип творчества (креативности) предполагает максимальную ориентацию на творческое начало в учебной деятельности ученика, приобретение ими собственного опыта творческой деятельности.
8. Принцип системности. Развитие ребёнка - процесс, в котором взаимосвязаны и взаимозависимы все компоненты. Нельзя развивать лишь одну функцию. Необходима системная работа по развитию ребёнка.
9. Соответствие возрастным и индивидуальным особенностям.
10. Адекватность требований и нагрузок.
11. Постепенность.
12. Индивидуализация темпа работы.
13. Повторность материала.
Ценностными ориентирами содержания данного факультативного курса являются:
– формирование умения рассуждать как компонента логической грамотности; освоение эвристических приемов рассуждений;
– формирование интеллектуальных умений, связанных с выбором стратегии решения, анализом ситуации, сопоставлением данных;
– развитие познавательной активности и самостоятельности учащихся;
– формирование способностей наблюдать, сравнивать, обобщать, находить
простейшие закономерности, использовать догадку, строить и проверять
простейшие гипотезы;
– формирование пространственных представлений и пространственного
воображения;
– привлечение учащихся к обмену информацией в ходе свободного общения на занятиях.
В работе с детьми нами будут использованы следующие методы:
- словесные,
- наглядные,
- практические,
- исследовательские.
Ведущим методом является исследовательский. Организаторами исследований могут, кроме учителя, становиться дети.
Для развития различных сторон мышления в программе предусмотрены разнообразные виды учебных действий, которые разбиты на три большие группы: репродуктивные, продуктивные ( творческие) и контролирующие.
К репродуктивным относятся:
а) исполнительские учебные действия, которые предполагают выполнение заданий по образцу,
б) воспроизводящие учебные действия направлены на формирование вычислительных и графических навыков.
Ко второй группе относятся три вида учебных действий - это обобщающие мыслительные действия, осуществляемые детьми под руководством учителя при объяснении нового материала в связи с выполнением заданий аналитического, сравнительного и обобщающего характера.
Поисковые учебные действия, при применении которых дети осуществляют отдельные шаги самостоятельного поиска новых знаний.
Преобразующие учебные действия, связанные с преобразованием примеров и задач и направленные на формирование диалектических умственных действий.
Контролирующие учебные действия направлены на формирование навыков самоконтроля.
Виды деятельности:
- творческие работы,
- задания на смекалку,
- лабиринты,
- кроссворды,
- логические задачи,
- упражнения на распознавание геометрических фигур,
- решение уравнений повышенной трудности,
- решение нестандартных задач,
- решение текстовых задач повышенной трудности различными способами,
- выражения на сложение, вычитание, умножение, деление в различных системах счисления,
- решение комбинаторных задач,
- задачи на проценты,
- решение задач на части повышенной трудности,
- задачи, связанные с формулами произведения,
- решение геометрических задач.
Место факультатива в учебном плане.
Содержание факультатива отвечает требованию к организации внеурочной деятельности: соответствует курсу «Математика», не требует от учащихся дополнительных математических знаний. Тематика задач и заданий отражает реальные познавательные интересы детей, содержит полезную и любопытную информацию, интересные математические факты, способные дать простор воображению.
Уроки по этому курсу включают не только геометрический материал, но и задания конструкторско-практического задания, характера.
В методике проведения уроков учитываются возрастные особенности и возможности детей, часть материала излагается в занимательной форме: сказка, рассказ, загадка, игра, диалог учитель- ученик или ученик-учитель.
Методы и приемы изучения геометрического материала.
Одна из важных особенностей курса “Геометрия вокруг нас” - его геометрическая направленность, реализуемая в блоке практической геометрии и направленная на развитие и обогащение геометрических представлений детей и создание базы для развития графической грамотности, конструкторского мышления и конструкторских навыков.
Одновременно с изучением арифметического материала и в органичном единстве с ним выстраивается система задач и заданий геометрического содержания, расположенных в порядке их усложнения и постепенного обогащения новыми элементами конструкторского характера. Основой освоения геометрического содержания курса является конструкторско-практическая деятельность учащихся, включающая в себя:
воспроизведение объектов;
доконструирование объектов;
переконструирование и полное конструирование объектов, имеющих локальную новизну.
Большое внимание в курсе уделяется поэтапному формированию навыков самостоятельного выполнения заданий, самостоятельному получению свойств геометрических понятий, самостоятельному решению некоторых важных проблемных вопросов, а также выполнению творческих заданий конструкторского плана.
В методике проведения занятий учитываются возрастные особенности детей, и материал представляется в форме интересных заданий, дидактических игр и т.д.
С целью освоения геометрических фигур выстраивается система специальных практических заданий, предполагающая изготовление моделей изучаемых геометрических фигур и выявления их основных свойств, отыскание введенных геометрических фигур на предметах и объектах, окружающих детей, а также их использование для выполнения последующих конструкторско-практических заданий.
Большое внимание в курсе уделяется развитию познавательных способностей. Термин познавательные способности понимается в курсе так, как его понимают в современной психологии, а именно: познавательные способности – это способности, которые включают в себя сенсорные способности (восприятие предметов и их внешних свойств) и интеллектуальные способности, обеспечивающие продуктивное овладение и оперирование знаниями, их знаковыми системами. Основа развития познавательных способностей детей как сенсорных, так и интеллектуальных - целенаправленное развитие при обучении математике познавательных процессов, среди которых выделяются: внимание, воображение, память и мышление.
Общая характеристика факультативного курса.
Факультативный курс «Геометрия вокруг нас» входит во внеурочную
деятельность по направлению общеинтеллектуальное развитие личности.
Программа предусматривает включение задач и заданий трудность которых определяется не столько математическим содержанием, сколько новизной и необычностью математической ситуации. Это способствует появлению желания отказаться от образца, проявить самостоятельность, формированию умений работать в условиях поиска, развитию сообразительности, любознательности.
В процессе выполнения заданий дети учатся видеть сходства и различия,
замечать изменения, выявлять причины и характер этих изменений, на этой основе формулировать выводы. Совместное с учителем движение от вопроса к ответу – это возможность научить ученика рассуждать, сомневаться, задумываться, стараться и самому найти выход – ответ.
Программа учитывает возрастные особенности и поэтому предусматривает организацию подвижной деятельности учащихся, которая не мешает умственной работе. С этой целью включены подвижные математические игры, предусмотрена последовательная смена одним учеником «центров» деятельности в течение одного занятия; передвижение по классу в ходе выполнения математических заданий на листах бумаги, расположенных на стенах классной комнаты и др. Во время занятий важно поддерживать прямое общение между детьми (возможность подходить друг к другу, переговариваться, обмениваться мыслями).
Цели знакомить учащихся с понятием высота, медиана, биссектриса, их построениями: определять площади геометрических фигур, с применением формул; познакомить с геометрическими телами.
Формирование основных понятий
Треугольники.
Треугольник. Вершины. Стороны. Прямоугольный треугольник. Тупоугольный треугольник. Остроугольный треугольник. Равносторонний треугольник. Сравнение треугольников. Из множества треугольников найти названный. Построение треугольников. Составление из треугольников других геометрических фигур.
Четырехугольники.
Четырехугольники. Вершины. Стороны. Диагонали. Квадрат. Построение квадратов и его диагоналей на линованной и нелинованной бумаге. Прямоугольник. Построение прямоугольников и его диагоналей. Виды четырехугольников. Сходство и различие.
Программа:
5 класс. (34 часа)
Высота. Медиана. Биссектриса.
Треугольники, высота, медиана, биссектриса основание и их построение. Прямоугольный треугольник. Катет и гипотенуза треугольника. Составление из треугольников других фигур.
«Новые» четырехугольники.
Параллелограмм. Ромб. Трапеция. Диагонали их и центр. Сходство этих фигур и различие.
Площадь.
Периметр и площадь. Сравнение. Нахождение площади с помощью палетки. Площадь треугольника. Площадь квадрата. Площадь прямоугольника. Нахождение площади нестандартных фигур с помощью палетки.
Геометрическая фигура.
Геометрическое тело.
Понятие объема. Геометрическое тело. Квадрат и куб. Сходство и различие. Построение пирамиды. Прямоугольник и параллелепипед. Построение параллелепипеда. Сходство и различие.
Круг, прямоугольник, цилиндр. Сходство и различие. Построение цилиндра. Знакомство с другими геометрическими фигурами.
Основные требования к знаниям, умениям и навыкам учащихся:
К концу 5 класса учащиеся должны владеть терминами: высота, медиана, биссектриса, основание, прямоугольный треугольник, катет, гипотенуза, параллелограмм, ромб, трапеция, куб, пирамида, параллелепипед, палетка, площадь, цилиндр. Учащиеся должны уметь: строить высоту, медиану, биссектрису треугольника, различные виды треугольников, параллелограмм, трапецию, а также проводить диагонали.
Строить ромб, находить центр. Иметь различие в периметре и площади, находить площадь с помощью палетки и формул.
Различать и находить сходство: (квадрат, куб, строить куб), (треугольник, параллелепипед, строить параллелепипед), (круг, прямоугольник и цилиндр, строить цилиндр).
Личностные, метапредметные и предметные результаты изучения факультативного курса «Геометрия вокруг нас».
Личностными результаты
развитие любознательности, сообразительности при выполнении
разнообразных заданий проблемного и эвристического характера;
развитие внимательности, настойчивости, целеустремленности, умения
преодолевать трудности – качеств весьма важных в практической деятельности
любого человека;
воспитание чувства справедливости, ответственности;
развитие самостоятельности суждений, независимости и нестандартности
мышления.
Метапредметные результаты
Ориентироваться в понятиях «влево», «вправо», «вверх», «вниз».
Ориентироваться на точку начала движения, на числа и стрелки 1→ 1↓ и др., указывающие направление движения.
Проводить линии по заданному маршруту (алгоритму).
Выделять фигуру заданной формы на сложном чертеже.
Анализировать расположение деталей (танов, треугольников, уголков, спичек) в исходной конструкции.
Составлять фигуры из частей. Определять место заданной детали в конструкции.
Выявлять закономерности в расположении деталей; составлять детали в соответствии с заданным контуром конструкции.
Сопоставлять полученный (промежуточный, итоговый) результат с заданным условием.
Объяснять (доказывать) выбор деталей или способа действия при заданном условии.
Анализировать предложенные возможные варианты верного решения.
Моделировать объёмные фигуры из различных материалов (проволока, пластилин и др.) и из развёрток.
Осуществлять развернутые действия контроля и самоконтроля: сравнивать построенную конструкцию с образцом.
Предметные результаты
Пространственные представления. Понятия «влево», «вправо», «вверх», «вниз». Маршрут передвижения. Точка начала движения; число, стрелка 1→ 1↓, указывающие направление движения. Проведение линии по заданному маршруту (алгоритму): путешествие точки (на листе в клетку). Построение собственного маршрута (рисунка) и его описание.
Геометрические узоры. Закономерности в узорах. Симметрия. Фигуры, имеющие одну и несколько осей симметрии.
Расположение деталей фигуры в исходной конструкции (треугольники,
таны, уголки, спички). Части фигуры. Место заданной фигуры в конструкции.
Расположение деталей. Выбор деталей в соответствии с заданным контуром конструкции. Поиск нескольких возможных вариантов решения. Составление и зарисовка фигур по собственному замыслу.
Разрезание и составление фигур. Деление заданной фигуры на равные по площади части.
Поиск заданных фигур в фигурах сложной конфигурации.
Решение задач, формирующих геометрическую наблюдательность.
Распознавание (нахождение) окружности на орнаменте. Составление
(вычерчивание) орнамента с использованием циркуля (по образцу, по собственному замыслу).
Объёмные фигуры: цилиндр, конус, пирамида, шар, куб. Моделирование из проволоки. Создание объёмных фигур из разверток: цилиндр, призма шестиугольная, призма треугольная, куб, конус, четырёхугольная пирамида, октаэдр, параллелепипед, усеченный конус, усеченная пирамида, пятиугольная пирамида, икосаэдр.
Универсальные учебные действия
Сравнивать разные приемы действий, выбирать удобные способы для выполнения конкретного задания.
Моделировать в процессе совместного обсуждения алгоритм решения числового кроссворда; использовать его в ходе самостоятельной работы.
Применять изученные способы учебной работы и приёмы вычислений для работы с числовыми головоломками.
Анализировать правила игры. Действовать в соответствии с заданными правилами.
Включаться в групповую работу. Участвовать в обсуждении проблемных вопросов, высказывать собственное мнение и аргументировать его.
Выполнять пробное учебное действие, фиксировать индивидуальное затруднение в пробном действии.
Аргументировать свою позицию в коммуникации, учитывать разные мнения,
использовать критерии для обоснования своего суждения.
Сопоставлять полученный (промежуточный, итоговый) результат с заданным условием.
Контролировать свою деятельность: обнаруживать и исправлять ошибки.
Тематическое планирование курса «Геометрия вокруг нас»
5 класс (34 часа)
| Тема урока | Кол-во часов | Содержание занятий |
1 | Подготовка учащихся к изучению объемных тел. | 1 | Составление узоров из геометрических фигур. Игра «Сложи квадрат». |
2 | Решение топологических задач. Подготовка учащихся к изучению объемных тел. | 1 | Топологические задачи. |
3 | Куб. Игра «Кубики для всех». | 1 | Зрительный диктант. |
4 | Прямоугольный параллелепипед. Куб. Развертка параллелепипеда. | 1 | Практическая работа. Развёртка куба. Моделирование куба. |
5 | Каркасная модель куба. Развертка куба. | 1 | Работа с проволокой. Игра «Одним росчерком». |
6 | Куб. Площадь полной поверхности куба. | 1 | Сказка. Графический диктант «Лампа». Задания на смекалку. |
7 | Знакомство со свойствами игрального кубика. | 1 | Игральный кубик. Задания на развитие пространственного мышления. Игра «Узнай фигуру». |
8 | Равносторонний и равнобедренный треугольники. | 1 | Графический диктант «Пирамида». Сказка. Практическая работа. |
9 | Измерение углов. Транспортир. | 1 | Градусная мера угла. Задания на нахождение градусной меры угла. Решение задач. |
10 | Построение углов заданной градусной меры. | 1 | Алгоритм построения угла. Игра «Одним росчерком». |
11 | Построение треугольника по трем заданным сторонам. | 1 | Стихотворение. Задачи на развитие пространственного мышления. |
12 | Построение равнобедренного и равностороннего треугольников. | 1 | Алгоритм построения треугольника. Оригами. |
13 | Площадь. Вычисление площади фигур сложной конфигурации. | 1 | Песенка. Задачи на нахождение площади. |
14 | Площадь. Измерение площади палеткой. | 1 | Палетка. Игра со спичками. Графический диктант «Белочка». |
15 | Числовой луч. | 1 | Практические задания. Задачи на развитие пространственного мышления. Игра «Собери узор». |
16 | Числовой луч (закрепление). | 1 | Задания на развитие памяти, внимания, логического мышления. |
17 | Сетки. Игра «Морской бой». | 1 | Игра «Морской бой». Правила игры. |
18 | Сетки. Координатная плоскость. | 1 | Задания на развитие пространственного мышления. Составление рисунка по заданию. Игра «Морской бой». |
19 | Осевая симметрия. | 1 | Игра «Выполни симметрично».. Игра «Выложи из спичек». |
20 | Симметрия. | 1 | Выполнение симметричных рисунков. Оригами «Ёжик» |
21 | Симметрия (закрепление). | 1 | Игра «Сложи узор». Графический диктант «Киска». Головоломка. |
22 | Поворотная симметрия. | 1 | Кубик Рубика. Практическая работа. |
23 | Прямоугольный параллелепипед. | 1 | Сказка. Задача на развитие воображения. |
24 | Прямоугольный параллелепипед. | 1 | Игра «На что похоже?». Задания с координатной плоскостью. |
25 | Прямоугольный параллелепипед. Модель развёртки параллелепипеда. | 1 | Моделирование параллелепипеда. Задание на сообразительность. |
26 | Цилиндр. | 1 | Стихотворение. Задание на развитие пространственного мышления. |
27 | Цилиндр. Закрепление изученного. | 1 | Самостоятельная работа. Графический диктант «Кувшин». |
28 | Конус. | 1 | Зрительный диктант. Загадки. Практическое задание. |
29 | Пирамида. | 1 | Моделирование пирамиды. Развёртка. |
30 | Пирамида. | 1 | Графический диктант. Задание на развитие воображения. «Танграм». |
31 | Шар. | 1 | Геометрическая разминка. Логическая задача «Колумбово яйцо». |
32 | Обобщение изученного материала по теме «Геометрические тела». | 1 | Игра «Узнай по развёртке». |
33 | Мониторинг ЗУН | 1 | Проверочные задания на сформированности геометрических понятий. |
34 | Геометрический КВН. | 1 | Игра - КВН. |
Итого 34 часа |
Оборудование и кадровое обеспечение программы.
Для осуществления образовательного процесса по Программе «Геометрия вокруг нас» необходимы следующие принадлежности:
набор геометрических фигур;
компьютер, принтер, сканер, мультмедиапроектор;
Литература
Литература для учителя.
В. Г. Житомирский, Л. Н. Шеврин «Путешествие по стране геометрии». М., « Педагогика-Пресс», 1994
Т.В. Жильцова, Л.А. Обухова «Поурочные разработки по наглядной геометрии», М., «ВАКО», 2004
Волина В. Праздник числа (Занимательная математика для детей): Книга для учителей и родителей. – М.: Знание, 1994. – 336 с.
http://school-collection.edu.ru
http://mat.1september.ru
http://nsportal.ru