Познакомить с действиями над комплексными числами в алгебраической и тригонометрической формах.
Развивающие:
Развивать мышление в процессе выполнения практических заданий.
Развивать пространственные представления.
Воспитывающие:
Воспитывать культуру записей в тетради.
Воспитывать аккуратность, усидчивость, внимательность в процессе прослушивания лекции.
Тип урока: обзорная лекция.
План урока.
Организационный момент.
Изложение материала.
Домашнее задание.
Подведение итогов урока.
Ход урока
I. Организационный момент.
II. Изложение материала.
1. Мотивация.
Расширение множества вещественных чисел состоит в том, что к действительным числам присоединяются новые числа (мнимые). Введение этих чисел связано с невозможностью во множестве действительных чисел извлечения корня из отрицательного числа.
2. Введение понятия комплексного числа.
Мнимые числа, которыми мы дополняем действительные числа, записываются в виде bi, где i – мнимая единица, причем i2 = - 1.
Исходя из этого, получим следующее определение комплексного числа.
Определение. Комплексным числом называется выражение вида a + bi, гдеaи b - действительные числа. При этом выполняются условия:
а) Два комплексных числа a1 + b1iи a2 + b2iравны тогда и только тогда, когда a1=a2, b1=b2.
б) Сложение комплексных чисел определяется правилом:
Запись комплексного числа в виде a + biназывают алгебраической формой комплексного числа, где а – действительная часть, bi – мнимая часть, причем b – действительное число.
Комплексное число a + biсчитается равным нулю, если его действительная и мнимая части равны нулю: a = b = 0
Комплексное число a + biпри b = 0 считается совпадающим с действительным числом a: a + 0i = a.
Комплексное число a + biпри a = 0 называется чисто мнимым и обозначается bi: 0 + bi = bi.
Два комплексных числа z = a + bi и = a – bi, отличающиеся лишь знаком мнимой части, называются сопряженными.
4. Действия над комплексными числами в алгебраической форме.
Над комплексными числами в алгебраической форме можно выполнять следующие действия.
1) Сложение.
Определение. Суммой комплексных чисел z1 = a1 + b1 i и z2 = a2 + b2 iназывается комплексное число z, действительная часть которого равна сумме действительных частей z1 и z2, а мнимая часть - сумме мнимых частей чисел z1 и z2 , то есть z = (a1 + a2) + (b1 + b2) i.
Числа z1 и z2 называются слагаемыми.
Сложение комплексных чисел обладает следующими свойствами:
3º. Комплексное число – a – bi называется противоположным комплексному числу z = a + bi. Комплексное число, противоположное комплексному числу z, обозначается -z. Сумма комплексных чисел z и -z равна нулю: z + (-z) = 0
Определение. Разделить комплексное число z1 на комплексное число z2, значит найти такое комплексное число z, что z · z2 = z1.
Теорема. Частное комплексных чисел существует и единственно, если z2 ≠ 0 + 0i.
На практике частное комплексных чисел находят путем умножения числителя и знаменателя на число, сопряженное знаменателю.
Пусть z1 = a1 + b1i, z2 = a2 + b2i, тогда
+ .
В следующем примере выполним деление по формуле и правилу умножения на число, сопряженное знаменателю.
Пример 4. Найти частное .
1 способ. .
2 способ. .
5) Возведение в целую положительную степень.
а) Степени мнимой единицы.
Пользуясь равенством i2 = -1, легко определить любую целую положительную степень мнимой единицы. Имеем:
i3 = i2 i = -i,
i4 = i2 i2 = 1,
i5 = i4 i = i,
i6 = i4 i2 = -1,
i7 = i5 i2 = -i,
i8 = i6 i2 = 1 и т. д.
Это показывает, что значения степени in, где n – целое положительное число, периодически повторяется при увеличении показателя на 4 .
Поэтому, чтобы возвести число i в целую положительную степень, надо показатель степени разделить на 4 и возвести i в степень, показатель которой равен остатку от деления.
Пример 5. Вычислите: (i 36 + i 17) · i 23.
i 36 = (i 4) 9 = 1 9 = 1,
i 17 = i 4 4+1 = (i 4)4 i = 1 · i = i.
i 23 = i 4 5+3 = (i 4)5 i3 = 1 · i3 = - i.
(i36 + i17) · i23 = (1 + i) (- i) = - i + 1= 1 – i.
б) Возведение комплексного числа в целую положительную степень производится по правилу возведения двучлена в соответствующую степень, так как оно представляет собой частный случай умножения одинаковых комплексных сомножителей.
Комплексное число z = a + bi можно задать с помощью радиус – вектора с координатами (a; b) (рис.4).
Рисунок 4
Определение. Длина вектора , изображающего комплексное число z, называется модулем этого числа и обозначается или r.
Для любого комплексного числа z его модуль r = | z | определяется однозначно по формуле .
Определение. Величина угла между положительным направлением действительной оси и вектором , изображающим комплексное число, называется аргументом этого комплексного числа и обозначается Аrgz или φ.
Аргумент комплексного числа z = 0 не определен. Аргумент комплексного числа z ≠ 0 – величина многозначная и определяется с точностью до слагаемого 2πк (к = 0; - 1; 1; - 2; 2; …): Argz = argz + 2πк, где argz – главное значение аргумента, заключенное в промежутке (-π; π], то есть -π argz ≤ π (иногда в качестве главного значения аргумента берут величину, принадлежащую промежутку [0; 2π)).
a = r · cos φ, b = r · sin φ.
Следовательно, комплексное число z = a + bi можно записать в виде:
z = r · cos φ + i r · sin φ или z = r · (cos φ + i sin φ).
Такая запись комплексного числа называется тригонометрической формой комплексного числа.
Пример 8. Представить в тригонометрической форме комплексное число 1– i.
a = 1, b = -1.
φ = .
1 – i = (cos + i sin ).
7. Действия над комплексными числами в тригонометрической форме.
1) Умножение.
Пусть два числа заданы и в алгебраической и в тригонометрической формах:
z1 = a1 + b1i = r1 (cos φ1 + i sin φ1), z2 = a2 + b2i = r2 (cos φ2 + i sin φ2).
На основании исходного определения правила умножения и формулы косинуса и синуса суммы получаем:
z1· z2 = r1 · r2 (cos (φ1 + φ2) + i sin (φ1 + φ2)); r1 · r20.
Умножение комплексных чисел в тригонометрической форме обладает следующими свойствами:
1º. Коммутативность: z1z2 = z2z1
2º. Ассоциативность: (z1z2) z3 = z1 (z2z3).
Пример 9. Найти произведение комплексных чисел z1 = 2cos 50º + 2 isin 50º,
z2 = cos 40º + isin 40º.
Решение. Тригонометрические формы этих чисел имеют вид:
z1 = 2 · (cos 50º + i sin 50º), z2 = 1· (cos 40º + i sin 40º).
Тогда z1 · z2 = 1· 2 · (cos (50º + 40º) + i sin (50º + 40º)) = 2(cos 90º + i sin 90º) = 2(0 + i) = 2i.
2) Деление комплексных чисел в тригонометрической форме.
Деление в поле комплексных чисел на числа, отличные от нуля, всегда выполнимо. Если числа z1 и z2 заданы в тригонометрической форме
z1 = r1 (cosφ1 + isinφ1), z2 = r2 (cosφ2 + isinφ2), причем z1 ≠ 0, то комплексное число = [cos (φ2 - φ1) + isin (φ2 - φ1)] является частным чисел z1 и z2(то есть z1y = z2).
Пример 10. Найти частное комплексных чисел z1 = 2cos 50º + 2 isin 50º,
z2 = cos 40º + isin 40º.
Решение. Тригонометрические формы этих чисел имеют вид:
z1 = 2 · (cos 50º + i sin 50º), z2 = 1· (cos 40º + i sin 40º).
Тогда (cos (50º - 40 º) + i sin (50º - 40º)) = 2(cos 10º + i sin 10º).
3) Возведение в степень.
Определение. n – ой степенью комплексного числа z называется комплексное число, получающееся в результате умножения числа z самого на себя n раз.
Число z называется основанием степени, а натуральное число n – показателем степени.
Возвести комплексное число в n – ую степень можно по формуле:
z n = (r n) [cos (nφ) + i sin (nφ)].
Эту формулу при r =1 часто называют формулой Муавра:
(cos φ + i sin φ) n = cos (nφ) + i sin (nφ), n N.
Пример 11. Вычислите (1 + i)100.
Запишем комплексное число 1 + iв тригонометрической форме.
a = 1, b = 1.
.
cos φ = , sin φ = , φ = .
(1+i)100 = [(cos + i sin)]100= ()100 (cos·100 + i sin·100) = = 250(cos 25π + i sin 25π) = 250(cos π + i sin π) = - 250.
4) Извлечение квадратного корня из комплексного числа.
При извлечении квадратного корня из комплексного числа a + bi имеем два случая:
если b о, то ;
если b , то .
Так как из комплексного числа всегда можно извлечь квадратный корень, то любое квадратное уравнение всегда будет иметь решения во множестве комплексных чисел. Решения квадратного уравнения ах2 + bх + с = 0 можно найти по известной формуле: .
Пример 12. Вычислите .
Так как b , то воспользуемся формулой
= = .
= ,
= .
III. Домашнее задание.
Дома учащимся предлагается выполнить задание на повторение и закрепление пройденного материала.