kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке.

Нажмите, чтобы узнать подробности

 

В разработке представлен урок по §46.п.1. Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке. Профильный уровень.10 класс”.

Урок проводится с целью изучения и первичного закрепления материала по теме “ Наибольшее и наименьшее значения функции на промежутке”, как одной из основных тем по исследованию функций. Это первый урок из четырёх по теме “Применение производной для нахождения наибольших и наименьших значений величин” и рассчитан на 1 час учебного времени. По ходу урока акцент делается на изучение и отработку как общих методов решения задач (по известному алгоритму), так и перевод задачи на другой язык (использование свойств функций).

Тип урока: урок изучения нового материала с использованием ИКТ.

Оборудование и материалы для урока: компьютерный класс, проектор, интерактивная доска, презентация для сопровождения урока, карточки-бланки для ответов учащихся, карточки-инструкторы для проведения работы.

Цель: познакомить учащихся с приемами нахождения наибольшего и наименьшего значения функции на промежутке.

Задачи.

Образовательная - повторить необходимые и достаточные условия существования точек экстремума, понятия: стационарная и критическая точка; вывести алгоритм нахождения наименьшего и наибольшего значений функции, формировать умения решать задачи на отыскание наибольших и наименьших значений функции.

Развивающая – развивать познавательный интерес обучающихся, умение исследовать, выделять главное, сравнивать, анализировать, делать выводы.

Воспитательная – воспитывать умения работать в сотрудничестве в парах и группе, оценивать работу товарища.

Знания, умения, навыки и качества, которые актуализируют/приобретут/ закрепят/ др. ученики в ходе урока:

- овладение практическими умениями и навыками по теме “Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке”

- умение устанавливать причинно-следственные связи, выделять главное, обобщать, систематизировать;

- формирование навыков самостоятельной работы с учебным материалом;

- формирование навыков самоконтроля.

Структура урока.

Ход урока

1. Оргмомент.

Организация групп (до урока). Приветствие. Эпиграф к уроку (слайд 1).

2. Актуализация знаний.

Устная работа (слайды 2-4). Повторение материала, изученного на предыдущих уроках. Фронтальная работа. Учитель обращает внимание обучающихся на существенное различие понятий максимума (минимума) функций и наибольшего (наименьшего) значений.

3. Мотивация.

Нахождение наибольшего и наименьшего значений функции широко применяется при решении многих практических задач на нахождение наилучших, оптимальных решений при наименьших затратах труда, так называемые задачи на оптимизацию.

С некоторыми из таких задач мы познакомимся на следующих уроках. Чтоб успешно решать такие задачи необходимо уметь находить наибольшее и наименьшее значения заданных функций на заданном промежутке.

Постановка обучающимися темы и целей урока (слайд 6-7).

4. Изучение нового материала. Первичное осмысление.

Ребятам предлагается три графика функции для самостоятельного определения точек наибольшего и наименьшего значений. Проанализировать расположение данных точек на графике и сделать вывод (слайд 8). Работа выполняется по группам. Если возникают затруднения, то можно воспользоваться карточкой-инструкцией. (Приложение 1)

Затем спикер одной из групп высказывает мнение своей группы, а остальные сравнивают его со своим мнением, дополняют или уточняют, возможно, опровергают. В итоге обучающиеся делают вывод (слайд 9).

Постановка проблемы.

Учитель задает вопрос: “Как, не изображая графика функции, определить наибольшее и наименьшее значение функции на отрезке?”

Задание 1. Найти наибольшее и наименьшее значение функции у = х3 - 3х2 - 45х + 1 на [-4; 6] без построения графика. (Слайд 10). Ребята предлагают решение. Учитель корректирует работу, задавая наводящие вопросы. Решение оформляется на доске в интерактивном режиме учителем.

Ответ: у наим = у (5) = -174; у наиб = у(-3) = 82.

Задание 2. (Слайд 11) Выполнить задание, рассуждая аналогично. Задание на репродуктивном уровне выполняется самостоятельно.

Ответ: у наим = у (-1) = -13; у наиб = у(1) = 3

Задание 3. Проанализировать решения предыдущих примеров и сформулировать алгоритм нахождения наименьшего и наибольшего значений функции на отрезке. Обучающиеся вновь по группам обсуждают данный вопрос, затем, обменявшись мнениями с другими группами, приходят к общему выводу.

Решение проблемы.

Ребята формулируют алгоритм. Проверяется алгоритм по учебнику стр.371 (слайд 12). (Ситуация успеха).

Учитель дополняет. Если речь идет о нахождении наибольшего или наименьшего значений функции, непрерывной на незамкнутом промежутке, то удобно использовать следующую теорему (слайд 13). Данная теорема в курсе 10 класса не доказывается. Ребята записывают теорему в тетрадь.

5. Закрепление “добытых” знаний.

При подготовке к уроку учитель делает закладку необходимой для занятия Web-страницы. Интернет-сайт “ЕГЭ по математике: подготовка к тестированию” http://www.uztest.ru. включает “Тренажер”, позволяющий проходить on-line тест по теме “Наибольшее, наименьшее значение функции” на конструктивном уровне. Ребятам предлагается выполнить тест из 5 заданий. Верные ответы заносятся в таблицу (Приложение 1). Осуществляя дифференцированный подход к обучающимся, предлагаются дополнительные примеры из учебника № 46.20(а), №46.21(а).

6. Итог. Рефлексия деятельности на уроке. Домашнее задание.

Учитель беседует с ребятами, говоря о новых знаниях полученных на уроке, о достигнутых целях, интересуется их ощущениями от происходящего и предлагает заполнить карточки рефлексии. (Приложение 1)

Домашнее задание. §46.п.1. Каждый ученик получает индивидуальное разноуровневое задание на сайте http://www.uztest.ru. Для входа на личную страницу учитель сообщает логин и пароль для каждого ученика. Оценки выставляются в электронный журнал.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке. »

Через математические знания лежит широкая дорога к огромным, почти необозримым областям труда и открытий. Маркушевич А.И.   Нахождение наибольшего и наименьшего значения функции  (при решении задач прикладного характера).

Через математические знания лежит широкая дорога к огромным, почти необозримым областям труда и открытий.

Маркушевич А.И.

Нахождение наибольшего и наименьшего значения функции (при решении задач прикладного характера).

(x ²)′= 0 (2x ³)′= 0 (x 10 ) ′= 7 6x ² (128 )′= (10) ′= 1 ( x ³ ) ′= 9 10x 3 2x x ² 10x + 3 (7x )′= (5x ² + 3x - 9 )′=

(x ²)′=

0

(2x ³)′=

0

(x

10

) ′=

7

6x ²

(128 )′=

(10) ′=

1

(

x ³

) ′=

9

10x

3

2x

x ²

10x + 3

(7x )′=

(5x ² + 3x - 9 )′=

АЛГОРИТМ

АЛГОРИТМ

  • Найти точки экстремума функции, т. е. точки в которых производная равна нулю и меняет свой знак.
  • Вычислить значение функции в этих точках и на концах отрезка, где определена функция.
  • Выбрать из полученных значений оптимальное.
  • Перевести задачу на язык математики, т. е. выразить искомую величину через функцию от некоторой переменной и найти область её определения.
Выполните задание: Найти промежутки возрастания и убывания функции. Найти экстремумы функции. Найти наибольшее и наименьшее значение функции на отрезке [-1;2] Y = N  · x³ - 2·N  ·  x² + 3·N   3 Y = N · x² - 2·N · x + 8

Выполните задание:

  • Найти промежутки возрастания и убывания функции.
  • Найти экстремумы функции.
  • Найти наибольшее и наименьшее значение функции на отрезке [-1;2]

Y = N · x³ - 2·N · x² + 3·N

3

Y = N · x² - 2·N · x + 8

Легенда об основании Карфагена гласит, что когда финикийский корабль пристал к берегу, местные жители согласились продать прибывшим столько земли, сколько можно огородить её одной бычьей шкурой. Но хитрая царица Дидона разрезала эту шкуру на ремешки, связала их и огородила полученным ремнём большой участок земли, примыкавший к побережью. Вопрос: какую наибольшую площадь земли могли купить финикийцы?

Легенда об основании Карфагена гласит, что когда финикийский корабль пристал к берегу, местные жители согласились продать прибывшим столько земли, сколько можно огородить её одной бычьей шкурой. Но хитрая царица Дидона разрезала эту шкуру на ремешки, связала их и огородила полученным ремнём большой участок земли, примыкавший к побережью.

Вопрос: какую наибольшую площадь земли могли купить финикийцы?

Переведём задачу на язык математики. B A AC+CD+DB=L x x D C L  -  2x S = x(L-2x)

Переведём задачу на язык математики.

B

A

AC+CD+DB=L

x

x

D

C

L - 2x

S = x(L-2x)

Y = x(L-2x) → max Y = Lx – 2x ² Y′ = L – 4x Данный прямоугольник является половиной квадрата, длинной стороной примыкающей к берегу моря. 2. Y′ = 0 ; L = 4x  x = 0,25L 3. — + 0,25L max 4. AC = 0,25L ;DC = 0,5L

Y = x(L-2x) → max

Y = Lx – 2x ²

  • Y′ = L – 4x

Данный прямоугольник является половиной квадрата, длинной стороной примыкающей к берегу моря.

2. Y′ = 0 ; L = 4x

x = 0,25L

3.

+

0,25L

max

4. AC = 0,25L ;DC = 0,5L

Стоимость (за один час перевозки) содержания баржи состоит из двух частей: стоимости топлива, пропорциональной кубу скорости баржи, и стоимости амортизации баржи ( зарплата команды, стоимость оборудования и т. д.). Общая стоимость содержания баржи за час выражается формулой: S = av ³ + b , где v - скорость судна в км/ч, a и b – коэффициенты, заданные для каждого судна (для нашего а=0,005, b =40). Ясно, что расходы на топливо будут тем больше, чем быстрее движется корабль, остальные расходы от скорости не зависят. Казалось бы, чем медленнее движется корабль, тем дешевле его эксплуатация. Так ли это?

Стоимость (за один час перевозки) содержания баржи состоит из двух частей: стоимости топлива, пропорциональной кубу скорости баржи, и стоимости амортизации баржи ( зарплата команды, стоимость оборудования и т. д.). Общая стоимость содержания баржи за час выражается формулой: S = av ³ + b , где v - скорость судна в км/ч, a и b – коэффициенты, заданные для каждого судна (для нашего а=0,005, b =40).

Ясно, что расходы на топливо будут тем больше, чем быстрее движется корабль, остальные расходы от скорости не зависят.

Казалось бы, чем медленнее движется корабль, тем дешевле его эксплуатация. Так ли это?

S/v = 0,005v ² + 40 / v → min Y′ = 0,005 ·2v – 40/v²  2. Y′ = 0 ;  0,01v – 40/v² = 0  0,01v = 40/v²   0,01v³ = 40  v³  = 4000  v ≈ 16 км/ч Оптимальная скорость катера для минимальных затрат  равна 16 км/ч — + 3. 16 min

S/v = 0,005v ² + 40 / v → min

  • Y′ = 0,005 ·2v – 40/v²

2. Y′ = 0 ; 0,01v – 40/v² = 0

0,01v = 40/v²

0,01v³ = 40

= 4000

v ≈ 16 км/ч

Оптимальная скорость катера для минимальных затрат равна 16 км/ч

+

3.

16

min

Печатный текст (вместе с промежутками между строками) одной страницы книги должен занимать 400 см ² . Верхние и нижние поля страницы должны иметь ширину 2 см. Боковые – 4 см. Вопрос: каковы самые выгодные размеры страницы, исходя только из экономии бумаги?

Печатный текст (вместе с промежутками между строками) одной страницы книги должен занимать 400 см ² . Верхние и нижние поля страницы должны иметь ширину 2 см. Боковые – 4 см.

Вопрос: каковы самые выгодные размеры страницы, исходя только из экономии бумаги?

L K 2 D A AB = x 4 KN = x + 4 4 S = 400 см ² BC = 400/x KL = 400/x + 8 х 400/х B C 2 M N S = (x + 4) ·(400/x + 8) = = 1600/x + 8x + 432

L

K

2

D

A

AB = x

4

KN = x + 4

4

S = 400 см ²

BC = 400/x

KL = 400/x + 8

х

400/х

B

C

2

M

N

S = (x + 4) ·(400/x + 8) =

= 1600/x + 8x + 432

S = 1600/x + 8x + 432 → min 1. S ′ = -1600/x² + 8 2. S′ =  0; -1600/x² + 8 = 0  1600/x² = 8  x²  = 1600/8  x ≈ 14 Оптимальные размеры страницы  18х36,5 см. 3. — + 1 4 4. KN = х + 4 =18  KL = 400/x + 8 ≈ 36,5 min

S = 1600/x + 8x + 432 → min

1. S ′ = -1600/x² + 8

2. S′ = 0; -1600/x² + 8 = 0

1600/x² = 8

= 1600/8

x ≈ 14

Оптимальные размеры страницы

18х36,5 см.

3.

+

1 4

4. KN = х + 4 =18

KL = 400/x + 8 36,5

min

Вывод: Производная функции успешно применяется при решении оптимальных задач в различных сферах деятельности человека. Д/з решить задачу:  Рекламный щит имеет форму прямоугольника S = 9 м ² . Изготовьте щит в виде прямоугольника с наименьшим периметром. Определите его стоимость, если суммарная цена материалов и работ по изготовлению за 1 м ² составляет 200 грн + 25 грн за погонный метр длины щита.

Вывод:

Производная функции успешно применяется при решении оптимальных задач в различных сферах деятельности человека.

Д/з решить задачу: Рекламный щит имеет форму прямоугольника S = 9 м ² . Изготовьте щит в виде прямоугольника с наименьшим периметром. Определите его стоимость, если суммарная цена материалов и работ по изготовлению за 1 м ² составляет 200 грн + 25 грн за погонный метр длины щита.

Все молодцы! Спасибо за урок!

Все молодцы!

Спасибо за урок!


Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: 10 класс.
Урок соответствует ФГОС

Скачать
Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке.

Автор: Квашнина Лилия Викторовна

Дата: 23.06.2014

Номер свидетельства: 107919

Похожие файлы

object(ArrayObject)#863 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(198) "Рабочая программа по алгебре и началам анализа для 11 класса к учебнику Мордковича А.Г. (углубленный уровень) "
    ["seo_title"] => string(119) "rabochaia-proghramma-po-alghiebrie-i-nachalam-analiza-dlia-11-klassa-k-uchiebniku-mordkovicha-a-g-ughlubliennyi-urovien"
    ["file_id"] => string(6) "112844"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1408961751"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства