kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Конспекты уроков обобщающего повторения по теме "Проценты"

Нажмите, чтобы узнать подробности

Конспекты уроков обобщающего повторения по теме "Проценты"для 9 класса.

       Необходимость обращения к теме «Проценты» на этапе обобщающего повторения обусловлена, прежде всего, непродолжительным изучением данной темы на первом этапе основной школы, когда учащиеся в силу возрастных особенностей ещё не имеют полноценных представлений о роли процентов в повседневной жизни. И, хотя на последующих этапах обучения в учебниках встречаются задачи на проценты, в них отсутствует компактное и чёткое изложение соответствующей теории. Рассматриваемый цикл задач включён в материалы итоговой аттестации. Понимание процентов и умение производить простейшие процентные расчёты в настоящее время необходимы каждому человеку. Прикладное значение этой темы очень велико и затрагивает финансовую, демографическую, экологическую и бытовую стороны нашей жизни.

       Данные разработки уроков могут быть использованы учителем и в других классах – при изучении и повторении темы «Проценты» - набор задач различных типов уровня стандарта позволит применять их в устном счёте, математических диктантах, при первичном закреплении. Компьютерная презентация сборника детских работ с сохранением авторского стиля и орфографии внесёт в любой урок оживление, заинтересованность: «Если смогли они, то смогу и я». Мастер – класс младших  учеников для старших заставляет тщательно готовиться и  даёт уверенность в знаниях.

  

Просмотр содержимого документа
«Конспекты уроков обобщающего повторения по теме "Проценты" »

Уроки обобщающего повторения по теме «Проценты» в 9 классе


Необходимость обращения к теме «Проценты» на этапе обобщающего повторения обусловлена, прежде всего, непродолжительным изучением данной темы на первом этапе основной школы, когда учащиеся в силу возрастных особенностей ещё не имеют полноценных представлений о роли процентов в повседневной жизни. И, хотя на последующих этапах обучения в учебниках встречаются задачи на проценты, в них отсутствует компактное и чёткое изложение соответствующей теории. Рассматриваемый цикл задач включён в материалы итоговой аттестации. Понимание процентов и умение производить простейшие процентные расчёты в настоящее время необходимы каждому человеку. Прикладное значение этой темы очень велико и затрагивает финансовую, демографическую, экологическую и бытовую стороны нашей жизни.

Данные разработки уроков могут быть использованы учителем и в других классах – при изучении и повторении темы «Проценты» - набор задач различных типов уровня стандарта позволит применять их в устном счёте, математических диктантах, при первичном закреплении. Компьютерная презентация сборника детских работ с сохранением авторского стиля и орфографии внесёт в любой урок оживление, заинтересованность: «Если смогли они, то смогу и я». Мастер – класс младших учеников для старших заставляет тщательно готовиться и даёт уверенность в знаниях.

Урок №1: повторение теории, решение типовых задач в группах

Урок №2:закрепление умений в решении задач, решение задач повышенного уровня (дифференцированные задания)

Урок №3: развитие компетентностных умений в применении процентов: мастер - класс «Проценты рядом с нами»


Основные цели, определённые на цикл уроков.


Образовательные цели:

- повторить определение процента,

- рассмотреть решение опорных задач

- учить осознанному применению понятия «процент» в решении типовых задач

- рассмотреть задачи более высокого уровня сложности с отдельной группой учащихся

-показать широту применения процентных расчётов в реальной жизни

- учить применять полученные умения в повседневной жизни

Развивающие цели:

- развивать познавательный интерес учащихся, умения выделять главное, сравнивать, анализировать

-прививать учащимся основы экономической грамотности

-формировать компетентностные умения

Воспитательные цели:

- способствовать формированию качеств мышления, необходимых человеку для социальной ориентации


Урок №1.

Ход урока


  1. Организационный момент – вводная лекция (основные понятия, типовые задачи, прямое применение).

Проценты – одно из математических понятий, которые часто встречаются в повседневной жизни. В СМИ часто слышим или читаем: в выборах приняли участие 76,8% избирателей, успеваемость в классе составила 95%, зарплата повысилась на 17%, скидки на распродажах составляют 23% и др. Понятие процента вы рассмотрели в 5 классе и периодически встречаетесь с задачами такого типа на страницах своего учебника. Кроме того, их достаточно много в вариантах работ на итоговой аттестации

Кто может уверенно сказать, что легко разбирается с любой информации, содержащей проценты?

Итак, наши задачи на ближайшие три урока:

- вспомнить, что такое процент,

- рассмотреть опорные задачи,

- научиться решать элементарные задачи различных типов,

- применить полученные знания в смоделированной жизненной ситуации.

Основная часть.

  1. Процент – это сотая часть числа

Фронтальная работа с необходимыми записями в тетрадях:

1)Представить проценты десятичными дробями: 2%, 1000%, 0,5%,2,67%, 510%, 312%, 34,8%,0,1%.

2)Представить данные десятичные дроби в процентах: 0,6; 0,26; 0,753; 0,042; 65; 43,9;198.

3)Наиболее употребляемые процентные отношения:

100%=1; 50%=; 25%=; 200%=2; 10%=; 1%=

4)Различные обозначения:

18% -- 0,18 --

р% --0,01р --

5)Систематизация знаний

Основные понятия, связанные с процентами:

1.Нахождение процента от числа: чтобы найти а% от числа в, надо – в*0,01а

Пример: 30% от числа 60 составляет: 60*0,3=18

2.Нахождение числа по его проценту: если известно, что а% числа х равно в, то х=в:0.01а

Пример. 3% числа х составляют 150.

х = 150 : 0,03, х = 5000

3.Нахождение процентного отношения чисел

Чтобы найти процентное отношение чисел, надо отношение этих чисел умножить на 100%: *100%.

Пример: сколько процентов составляет число 150 от 600?

*100% = 25%

4.Одна величина больше (меньше) другой на р%.

а) если а больше в на р%, то а = в + 0,01рв = в(1+0,01р)

б) если а меньше в на р%, то а = в - 0,01рв = в(1-0,01р)

в) если а увеличилось на р%, то новое значение а равно а(1 + 0,01р)

г) если а уменьшилось на р%, то новое значение а равно а(1 - 0,01р)

Примеры.

а) а больше в на 30% - это значит, что а = в + 0,3в = 1,3в

б) а меньше в на 30% - это значит, что а = в - 0,3в = 0,7в

в) увеличить число 60 на 20%: 60 + 60*0,2 = 72 или 60(1 + 0,2) = 72

г) уменьшить число 72 на 20%: 72 – 72*0,2 =57,6 или 72(1 – 0,2) = 57,6


  1. Отработка умений применять обобщённую теорию в решении задач уровня стандарта, предлагаемых в сборнике Кузнецовой Л.В. для подготовки к государственной итоговой аттестации (приложение №1).

Работа ведётся в группах неоднородного состава. Консультанты из числа хорошо успевающих учеников оказывают помощь в решении товарищам в группе. В случае затруднений обращаются за помощью к учителю. Задачи разбиты по разделам:

1)соотношения - №5,6

2) выражения - №9,10.11,12,15,17.19,21.23

3) нахождение % от числа - №3,7.8,13,14

4) увеличение или уменьшение числа - №1,2,4,16,18,20,22,24


  1. Контроль уровня владения материалом: самостоятельная работа обучающего характера по решённым задачам (по одной задаче каждого типа) с самопроверкой по данным ответам

  2. Анализ полученных результатов, коррекция – решение задачи, в которой была ошибка, вместе со своим консультантом

  3. Подведение итогов урока. Домашнее задание: подготовиться к самостоятельной работе и принести к следующему уроку практическую задачу, содержащую проценты (составить или взять из СМИ) – для составления сборника задач 9 класса МОУ Яркульской СОШ




Урок №2

Ход урока


1.Проверка домашнего задания.

а) фронтальное повторение основных положений теории и алгоритмов решения типовых задач

б) решить задачи на черновике и проверить по данным на закрытой доске ответам:

1) Товар стоил 270 рублей. Сколько он будет стоить после снижения цены на 20%?

2)Зарплата менеджера повысилась на 3%. Какой стала зарплата, если до повышения менеджер получал 15 тыс. рублей?

3)В классе 20 учащихся. 30% всех учеников получили за контрольную работу отличные оценки. Сколько пятёрок за контрольную работу?

4) На стоянке 300 легковых автомобилей, что составляет 60% всех автомобилей на стоянке, а остальные – грузовые. Сколько грузовых автомобилей?

5) Сколько процентов от числа 56 составляет число 8?

в) сдать тексты задач с решениями для проверки

2. Решение задач (дифференцированная работа)


Время

Первая группа

Вторая группа

15 мин

- решение задач на уровне стандарта (работа в парах – индивидуальное решение задачи, сверка результатов, разбор ошибок) – по задачам Приложения №1

Разбор с учителем задач №7.7(1); №7.8(1) из сборника Л.В.Кузнецовой

15 мин

индивидуальная самостоятельная работа:

1).Летом рюкзак стоил 880 рублей. Осенью цены на рюкзаки снизились на 25%, а зимой – ещё на 25%. Сколько рублей заплатит покупатель, если купит рюкзак зимой?

2).Для смеси сухих трав взяли душицу и чабрец в отношении 13: 7. Какой процент смеси составляет чабрец?

3) Цены в магазине были снижены на 30%.Некоторый товар до снижения цены стоил х рублей. Запишите выражение для вычисления новой цены товара.

4)Брюки в комиссионном магазине стоят 100 рублей. В соответствии с принятыми в магазине правилами цена нереализованного товара каждые две недели снижается на 15%. Сколько будет стоить товар на 23-й день, если не будет куплен?


Самостоятельное решение задач №7.7(2); №7.8(2)_


  1. Подведение итогов урока: мы рассмотрели примеры типовых задач на проценты – уровня стандарта и задачи более высокого уровня сложности. Результаты самостоятельной работы позволят узнать, как вы научились их решать. К следующему уроку повторить опорные задачи, т.к. на следующем уроке мы проведём мастер – класс по решению практических задач на проценты для старшеклассников 10-11 классов.



Урок №3: Мастер – класс «Проценты на каждый день»

Мастер – класс проводят ученики 9 класса для учащихся 10 -11 классов.

Девиз: «Научился сам – научи и проверь старшего товарища»


Цели игры:

- показать применение процентных вычислений в жизни, в некоторых профессиях

- в неформальной обстановке провести контроль умений решать задачи уровня стандарта

- развивать умения применять знания в нестандартных ситуациях

- воспитывать качества мышления, необходимые для профессионального определения


Подготовка к уроку, ход игры. Готовятся таблички с названиями «Коммунальный отдел», «Антикварный магазин», «Обувной отдел», «ГИБДД», «Кассир», «Банк», «Избирательная комиссия». На доске – список учащихся10-11 классов, которые выступают в роли пользователей – для определения рейтинга пользователя. Ученики 9 класса выступают в роли функционеров. У них - карточки с задачами для пользователей. Имеются ответы с решениями (при подготовке к игре задачи были решены и проверены у учителя). Все пользователи должны пройти по всем «организациям». Функционеры ведут учёт самостоятельно решённым задачам. В случае затруднений оказывают помощь в их решении. (Задачи – приложение №3)


Итог урока. На доске проставляются результаты работы каждого пользователя, коллективно определяется их рейтинг. Выявляется победитель. Награждение.


Приложения

Приложение №1.

Задачи на проценты (уровень стандарта)

1.При покупке стиральной машины стоимостью 6500 р. покупатель предъявил вырезанную из газеты рекламу, дающую право на 5% скидки. Сколько он заплатит за машину?

2.Плата за коммунальные услуги составляет 800 рублей. Сколько придётся платить за коммунальные услуги после их подорожания на 6%?

3.Предприятие разместило в банке 5 млн. р. под 8% годовых. Какая сумма будет на счету предприятия через год?

4.Уровень воды в реке находился на отметке 2,4 м. В первые часы наводнения он повысился на 5 %. Какой отметки при этом достигла вода в реке?

5.Соотнесите дроби, которые выражают доли некоторой величины, и соответствующие им проценты.

а)3/4 б)1/2 в)0,08 г)0,8

1)50% 2)80% 3)75% 4)8%

6. Соотнесите дроби, которые выражают доли некоторой величины, и соответствующие им проценты.

а)1/4 б)4/5 в)0.4 г)0.04

1)40% 2)25% 3)80% 4)4%

7.Средний вес мальчиков того же возраста, что и Сергей, равен 48 кг. Вес Сергея составляет 120% среднего веса. Сколько весит Сергей?

8.Средний вес девочек того же возраста, что и Маша, равен 36 кг. Вес Маши составляет 110% среднего веса. Сколько весит Маша?

9Перед новым годом цены в магазине подарков были снижены на 25%. Некоторый товар до уценки стоил х р. Ученик записал четыре разных выражения для вычисления новой цены товара. Одно из них неверно. Какое?

А)х – 0,25х б)0,75х в)х – 25 г)х – х/4

10.За 7год цены на бензин выросли на 20%. В начале года бензин марки А стоил х р. Ученик за записал четыре разных выражения для вычисления новой цены бензина этой марки. Одно из них неверно. Какое?

А)х + 0,2хх б)х + 20 в)1,2х г) х + х/5

11.На счёт в банке, доход по которому составляет 20% годовых, внесли а рублей. Какая сумма будет на счету через год?

А)а + 0,2а р. Б)а + 20а р. В)0,2а р. Г)а +20 р.

12.При получении денег через банкомат банк удерживает 3% от снятой суммы. Сколько всего денег будет снято со счёта клиента, если он получает через банкомат а р.?

А) а-0,03а р. Б) а + 0,03а р. В)0,03а р. Г) а р.

13.В таблице представлен результат сбора макулатуры в 9 классах . Сколько килограммов макулатуры собрал 9»А», если всего было собрано 240 килограммов?

9»А»

9»Б»

9»В»

9»Г»


25%

20%

25%



14.В таблице представлен численный состав учащихся, обучающихся в 9-х классах. Сколько учащихся учится в 9»А», если всего в школе 80 девятиклассников?

9»А»

9»Б»

9»В»

9»Г»


24%

27%

19%


15.На распродаже цены в магазине были снижены в 2 раза. Некоторый товар до снижения цены стоил х рублей. Ученик выписал четыре различных выражения для вычисления новой цены товара. Одно из них неверно. Какое?

А) 2х б) 0,5х в)х – 0,5х г) х – 1/2х

16.Некоторый товар поступил в продажу по цене 80 р. В соответствии с принятыми в магазине правилами цена нереализованного товара по истечении каждого месяца снижается на 20%. Сколько будет стоить товар на 36-й день, если он не будет куплен?

А)8 р. Б) 51,2 р. В) 60 р. Г) 64 р.

17.На распродаже цены в магазине были снижены на 30%. Некоторый товар до снижения цены стоил Х рублей. Ученик выписал четыре различных выражения для вычисления новой цены товара. Одно из них неверно. Какое?

А. х-0,3х Б. 0,7х В. х – х/3 Г, х – (3х)/10

18. Некоторый товар поступил в продажу в комиссионный магазин по цене 100 р. В соответствии с принятыми в магазине правилами цена нереализованного товара каждые две недели снижается на 15%. %. Сколько будет стоить товар на 23-й день, если он не будет куплен?

А, 85 р. Б. 72,25 р. В,15 р. Г. 96 р

19. .На распродаже цены в магазине были снижены на 10%. Некоторый товар до снижения цены стоил Х рублей. Ученик выписал четыре различных выражения для вычисления новой цены товара. Одно из них неверно. Какое?

А .0,9х Б. х/10 В х – 0,1х Г. х – х/10

20. В комиссионный магазин поступил товар по цене 120 р. . В соответствии с принятыми в магазине правилами цена нереализованного товара каждую неделю снижается на 5%. Сколько будет стоить товар на 9-ый день, если он не будет куплен?

А. 115 р. Б. 114 р. В.108,3 р. Г. 6 р.

21. На распродаже цены в магазине были снижены на 40%. Некоторый товар до снижения цены стоил Х рублей. Ученик выписал четыре различных выражения для вычисления новой цены товара. Одно из них неверно. Какое?

А. 0,6х Б. 0,4х В. Х – 0,4х Г. х –( 2х)/5

22. В комиссионный магазин поступил товар по цене 70 р.. В соответствии с принятыми в магазине правилами цена нереализованного товара каждый месяц снижается на 10%. Сколько будет стоить товар на 43-ий день, если он не будет куплен?

А. 56,7 р. Б. 60 р. В. 63 р. Г. 7 р.

23. .На распродаже цены в магазине были снижены на 15%. Некоторый товар до снижения цены стоил Х рублей. Ученик выписал четыре различных выражения для вычисления новой цены товара. Одно из них неверно. Какое?

А.0,85х Б. х – 15 В. х – (3х)/20 Г. х – 0,15х

24. В комиссионный магазин поступил товар по цене 150 р.. В соответствии с принятыми в магазине правилами цена нереализованного товара каждую неделю снижается на 3%. Сколько будет стоить товар на 13-ый день, если он не будет куплен?

А. 145,5 р. Б. 141,2 р. В. 4,5 р. Г. 147 р.

Опорные сведения


  1. Чтобы найти 30% от числа а, надо 0.30а.

Пример: найти 5% от 120.

Решение: 0,05*120 = 6

  1. Если а больше в на 20%, то а=в+0,3в =1,3в

  2. Если а меньше в на 20%, то а = в – 0,3в = 0,7в

  3. Если а увеличили на 40%, то новое значение стало равно а + 0,4а = 1,4а

  4. Если а уменьшили на 40%, то новое значение стало равно а - 0,4а = 0,6а

Приложение №2.

Презентация проектной работы учащихся 9 класса «Сборник задач на проценты»


Задачник составлен учениками 9 класса. Авторский стиль и орфография сохранены. Каждый составитель представлял свою задачу на уроке в 8 классе. Учащиеся 8 класса должны были решить задачи. В случае затруднений автор объяснял решение.

  1. «Распродажа». В магазине «Эльдорадо» ноутбук с оперативной памятью 512 МВ стоит 14 тысяч. После того, как привезли ноутбук с памятью 1GB, его цену снизили на 15%, а когда привезли ноутбук с памятью 2GB,то его цену снизили ещё на 10%. Какой стала цена ноутбука?

  2. «Распродажа». В магазине «Сюрприз» коляска для детей стоят 3000 рублей. Снизили цену на 20%, потом ещё на 25%. Сколько будет стоить коляска?

  3. «Штрафы». Занятия ребёнка в художественной школе родители оплачивают в сбербанке, внося ежемесячно 100 рублей. Оплата производится до 10 числа каждого месяца, после чего за каждый просроченный день начисляется пеня в размере 2% от суммы оплаты. Сколько придётся заплатить родителям, если они просрочат неделю?

  4. «Распродажа». В магазине «Эльдорадо» магнитофон стоил 560 рублей. В марте цена была снижена на 9%, а в апреле ещё снижена на 5%. Какой станет цена после снижения цен в апреле?

  5. «Штрафы». При неуплате техосмотра водителю нужно заплатить штраф в размере 50% минимальной трудовой оплаты. (500 рублей). Сколько потребуется переплатить, если стоимость техосмотра 150 рублей?

  6. «Тарифы». Для того, чтобы отправить открытку, нужно было заплатить 14 рублей. Но по сообщениям из газет, теперь, чтобы отправить открытку, нужно заплатить 10 рублей. На сколько процентов уменьшилась стоимость отправления открытки?

  7. «Зарплата». Месячный заработок рабочего составляет 12155 рублей. Из зарплаты вычитается подоходный налог в размере 7%. Сколько денег получит рабочий?

  8. «Распродажа». Апельсины подешевели на 30%. Сколько апельсинов можно теперь купить на те же деньги, на которые раньше покупали 2,8 кг?

Приложение №3 (карточки для мастер - класса)


ТАРИФЫ»

(Для потребителя электроэнергии)

В начале года тариф на электроэнергию составлял 40 коп. за 1 кВт/ч. В середине года он увеличился на 50%, а в конце года – еще на 50%. Каким стал тариф?

«РАСПРОДАЖА»

(Для продавца антикварного отдела)

Антикварный магазин приобрел старинный предмет за 30 тыс. руб. и выставил его на продажу, повысив цену на 60%. Но этот предмет был продан лишь через неделю, когда магазин снизил его новую цену на 20%. Какую прибыль получил магазин при продаже антикварного предмета?

«РАСПРОДАЖА»

(Для продавца обувного отдела)

На сезонной распродаже магазин снизил цены на обувь сначала на 24%, а потом еще на 10%. Сколько рублей можно сэкономить при покупке кроссовок, если до снижения цен они стоили 593 руб.?

«ШТРАФЫ»

(Для родителей)

Занятия ребенка в музыкальной школе родители оплачивают в сбербанке, внося ежемесячно 250 руб. Оплата должна производиться до 15 числа каждого месяца, после чего за каждый просроченный день начисляется пеня в размере 4% от суммы оплаты за один месяц. Сколько придется заплатить родителям, если они просрочат оплату на неделю?

«ШТРАФЫ»

(Для водителя)

Если водитель не прошел техосмотр машины, то сотрудник ГИБДД должен оштрафовать его на ½ минимальной оплаты труда. Стоимость прохождения техосмотра составляет примерно 150 руб., а размер минимальной заработной платы 500 руб. На сколько процентов штраф превышает стоимость техосмотра?

«БАНКОВСКИЕ ОПЕРАЦИИ»

(Для вкладчика)

За хранение денег сбербанк начисляет вкладчику 8% годовых. Вкладчик положил на счет в банке 5000 руб. и решил в течение пяти лет не снимать деньги со счета и не брать процентные начисления. Сколько денег будет на счету вкладчика через год? Через пять лет?

«ГОЛОСОВАНИЕ»

(Для председателя избирательной комиссии)

В 2004 г. в выборах Президента РФ на избирательном участке № 356 приняли участие 56% избирателей от общего числа 2844 человек. За одного из кандидатов отдали голоса 1069 пришедших на выборы избирателей, за второго проголосовали 78 человек. Сколько процентов избирателей проголосовали за каждого из кандидатов?







Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: 9 класс.
Урок соответствует ФГОС

Скачать
Конспекты уроков обобщающего повторения по теме "Проценты"

Автор: Кудрявцева Галина Михайловна

Дата: 11.06.2014

Номер свидетельства: 101930

Похожие файлы

object(ArrayObject)#850 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(101) "План-конспект урока на тему "Проценты в реальной жизни" "
    ["seo_title"] => string(59) "plan-konspiekt-uroka-na-tiemu-protsienty-v-rieal-noi-zhizni"
    ["file_id"] => string(6) "222941"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1436973552"
  }
}

ПОЛУЧИТЕ БЕСПЛАТНО!!!
Личный сайт учителя
Получите в подарок сайт учителя


Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства