kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Геометрия и искусство (реферативная работа)

Нажмите, чтобы узнать подробности

Геометрия – прекрасна! Кто поспорит с нами? Тот, кто скажет, что геометрия просто наука, изучающая формы, размеры и взаимное расположение фигур. Слово геометрия греческое, оно означает «землемерие». И все? Геометрия полна приключений, потому что за каждой задачей скрывается приключение мысли. Решить задачу- это значит пережить приключение. Геометрия наполнена искусством, музыкой, живописью, скульптурами и стихами.

Геометрию издавна причисляли к семи свободным искусствам,  входившим в состав тривиума (грамматика, риторика, диалектика) и квадривиума (арифметика, геометрия, астрономия и музыка). Краткое изложение этих искусств содержит книга, написанная в VI в. великим Кассиодором, как справочник, по его мнению необходимых сведений для монахов для понимания библии. В середине века эта книга была широко распространена и среди священнослужителей, и среди мирян. Число семь всегда считалось магическим, и Кассиодор, обосновывая свой выбор семи главных предметов, сослался на священное писание (Книга притчей Соломоновых). Разумеется, семь свободных искусств со временем менялись.

Геометрия представляет большой исторический интерес, имеет серьезное практическое применение и обладает внутренней красотой. Геометрия занимала важное место в творчестве таких людей, как Витрувий, Альбрехт Дюрер, Леонардо да Винчи, Томас Гоббс и многих других. Многие великие умы испытали на себе эстетическую привлекательность геометрии, выполняя несложные построения, придумывая различные узоры, вычерчивая и вышивая кривые. При отборе литературы, работая над этой темой, мы следовали собственным симпатиям и отдали предпочтение тем аспектам искусства, которые представлялись нам наиболее важными. Это: музыка, живопись, скульптура.

Мы учимся в пятом классе и еще по-настоящему не изучали  предмет геометрии. Но, слышали, как ученики старших классов говорят, что она очень сложная и скучная наука.

А если это не так? Пусть сложная, но не скучная наука.

Мы предположили, что геометрия и искусство дополняют друг друга, а в некоторых случаях геометрия направляет искусство.

Объект нашего исследования: показать связь математики и музыки.

 Предметом исследования является вопрос, каким образом и для чего математика существует в музыке?

Предполагаем, что музыка без математики существовать не может.

«Музыка есть таинственная арифметика души; она вычисляет, сама того не сознавая» - писал Готфирд  Лейбниц.

Звук есть воспринимаемые человеческим слухом колебания воздуха. Музыкальные звуки порождаются музыкальными инструментами (в этом смысле человеческий голос тоже условно причисляется к музыкальным инструментам). Традиционной моделью для изучения музыкальных звуков является колеблющаяся струна. Струны лежат в основе большого числа инструментов (не только струнных, но и, например, клавишных).

  Пифагор – автор математической теории музыки. Создавая теорию музыкальной шкалы, связал основные музыкальные интервалы с дробями.  Для Пифагора музыка была производной от божественной науки математики, и ее гармонии жестко контролировались математическими пропорциями.

Своеобразие геометрии, выделяющее ее из других разделов математики, да и всех областей науки вообще, заключается в неразрывном, органическом соединении живого воображения со строгой логикой. В своей сущности и основе геометрия и есть пространственное воображение, пронизанное и организованное строгой логикой. В ней всегда присутствуют эти два неразрывно связанных элемента: наглядная картина и точная формулировка, строгий логический вывод.  Геометрия соединяет в себе эти противоположности, они в ней взаимно проникают, организуют и направляют друг         друга. Стоит лишь вспомнить классические творения архитектуры, начиная с древнейших пирамид, как сразу становится очевидным, что геометрия в некотором смысле относится к искусству. Искусство лучше всего воспринимать непосредственно

Изучив историю развития геометрии, мы выяснили, какую роль она играет в музыке, живописи, скульптурах.

 Все три рассмотренных направления  дают нам довольно полное и ясное представление о роли геометрии в различных видах  искусства. Благодаря данной работе мы  познакомилась с истоками музыки более подробно, попытались посмотреть глазами великих людей на некоторые их творения.

Пришли к выводу: геометрия и есть искусство.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Геометрия и искусство (реферативная работа) »


МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ

ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 34»

V школьная научно-практическая конференция





Тема «Геометрия и искусство» (реферативная работа)




Работу выполнили: ЦывкинаТатьяна учащиеся 5 «Б» класса Демиденко Лев,

Брутян Виктория,

Суслов Владимир, Владимиров Егор

Руководитель: Ланина Светлана

учитель математики Владимировна




г. Братск – 2015 г.


Оглавление

ВВЕДЕНИЕ 2

1.Геометрия и музыка. 2

2.Геометрия и живопись. 2

3.Геометрические скульптуры. 2

Заключение. 2

Приложение 2

Список использованной литературы. 2











Цель: Доказать, что геометрия и искусство неразрывно связаны друг с другом.

Задачи:

  1. Рассмотреть историю развития геометрии.

  2. Изучить литературу по данному вопросу.

  3. Рассмотреть вопросы применения геометрии в скульптуре, музыке, живописи.

  4. Составить презентацию по теме «Геометрия и искусство»





















ВВЕДЕНИЕ

Окружающий нас мир – это мир геометрии

А.Д.Александров.

.


Геометрия – прекрасна! Кто поспорит с нами? Тот, кто скажет, что геометрия просто наука, изучающая формы, размеры и взаимное расположение фигур. Слово геометрия греческое, оно означает «землемерие». И все? Геометрия полна приключений, потому что за каждой задачей скрывается приключение мысли. Решить задачу- это значит пережить приключение. Геометрия наполнена искусством, музыкой, живописью, скульптурами и стихами.

Геометрию издавна причисляли к семи свободным искусствам, входившим в состав тривиума (грамматика, риторика, диалектика) и квадривиума (арифметика, геометрия, астрономия и музыка). Краткое изложение этих искусств содержит книга, написанная в VI в. великим Кассиодором, как справочник, по его мнению необходимых сведений для монахов для понимания библии. В середине века эта книга была широко распространена и среди священнослужителей, и среди мирян. Число семь всегда считалось магическим, и Кассиодор, обосновывая свой выбор семи главных предметов, сослался на священное писание (Книга притчей Соломоновых). Разумеется, семь свободных искусств со временем менялись.

Геометрия представляет большой исторический интерес, имеет серьезное практическое применение и обладает внутренней красотой. Геометрия занимала важное место в творчестве таких людей, как Витрувий, Альбрехт Дюрер, Леонардо да Винчи, Томас Гоббс и многих других. Многие великие умы испытали на себе эстетическую привлекательность геометрии, выполняя несложные построения, придумывая различные узоры, вычерчивая и вышивая кривые. При отборе литературы, работая над этой темой, мы следовали собственным симпатиям и отдали предпочтение тем аспектам искусства, которые представлялись нам наиболее важными. Это: музыка, живопись, скульптура.

Мы учимся в пятом классе и еще по-настоящему не изучали предмет геометрии. Но, слышали, как ученики старших классов говорят, что она очень сложная и скучная наука.

А если это не так? Пусть сложная, но не скучная наука.

Мы предположили, что геометрия и искусство дополняют друг друга, а в некоторых случаях геометрия направляет искусство.















1.Геометрия и музыка.


Объект нашего исследования: показать связь математики и музыки.

Предметом исследования является вопрос, каким образом и для чего математика существует в музыке?

Предполагаем, что музыка без математики существовать не может.

«Музыка есть таинственная арифметика души; она вычисляет, сама того не сознавая» - писал Готфирд Лейбниц.

Звук есть воспринимаемые человеческим слухом колебания воздуха. Музыкальные звуки порождаются музыкальными инструментами (в этом смысле человеческий голос тоже условно причисляется к музыкальным инструментам). Традиционной моделью для изучения музыкальных звуков является колеблющаяся струна. Струны лежат в основе большого числа инструментов (не только струнных, но и, например, клавишных).

Пифагор – автор математической теории музыки. Создавая теорию музыкальной шкалы, связал основные музыкальные интервалы с дробями. Для Пифагора музыка была производной от божественной науки математики, и ее гармонии жестко контролировались математическими пропорциями.

 По преданию, сам Пифагор установил, что приятные слуху созвучия получаются лишь в том случае, когда длина струн, издающих эти звуки, относятся как целые числа первой четверки 1:2 2:3 3:4.Появилась музыкальная октава и гамма.

Это открытие потрясло Пифагора и долго вдохновляло его учеников на поиски новых числовых закономерностей в природе.

 На гравюре XV века изображен Пифагор, вместе с учениками проводящий эксперименты. Пифагорейцы открыли, что гармоничные звуки могут производить кузнечные молоты (вверху слева), большие и малые колокола и чаши с водой (вверху справа), флейты и дудки (внизу справа) и натянутые с различной силой с помощью гирек струны (внизу слева).

  Как пифагорейцы изучали колебания струны? Они использовали для этого несложный прибор под названием монохорд, представляющий из себя единственную струну, закрепленную в двух точках над резонатором, которая могла пережиматься в разных местах. Проведя ряд опытов над натянутыми струнами, монохорда Пифагорейцы пришли к открытию закона состоящего в том, что все музыкальные интервалы находятся в непосредственной связи с числовыми отношениями; так половина струны (1/2) звучит в октаву, 2/3 в квинту, 3/4 в кварту и т.д. тон издается целою струною.

  Пифагор осознавал глубочайшее воздействие музыки на чувства и эмоции, на ум и тело, называя это терапевтической музыкой. Он утверждал, что "музыка очень благотворно действует на здоровье, если заниматься ею подобающим образом". Поэтому пифагорейцы, "отходя ко сну,...очищали разум от дневного смятения и шума определенными песнями и особого рода мелодиями и этим обеспечивали себе спокойный сон.". Однажды  Пифагору удалось унять гнев пьяного разбуянившегося юноши просто тем, что он велел флейтисту сыграть торжественную мелодию.  Тем самым философ не только открыл целый ряд музыкальных эффектов, но и нашел им практическое применение в учебе и медицине. Даже сегодня военная музыка используется с впечатляющим эффектом

  Композитор и исследователь музыки из Принстонского университета Дмитрий Тимошко и его коллеги опубликовали в журнале Science статью, описывающую метод геометрического представления музыкальных объектов и операций над ними. Метод позволяет визуализировать музыку, математически исследовать родство между музыкальными произведениями, по-новому взглянуть на проблемы теории музыки и даже, возможно, привести к созданию новых музыкальных инструментов. Основная идея исследователей заключается в том, что для анализа музыки необходимо уметь игнорировать информацию: отождествлять различные музыкальные объекты. Под музыкальным объектом они понимают последовательность нот, воспроизведенную одним или несколькими инструментами (аккорд). Исследователи представляют аккорд как точку в геометрическом пространстве, а затем используют отношения эквивалентности для преобразований пространства. Получающиеся наглядные изображения, по их мнению, представляют удобный инструмент для сравнительного анализа произведений и поиска новых музыкальных решений.

Между математикой и музыкой существуют общие понятия, такие как ритм, пропорция, противоположность.

(Смотрите Приложение - Таблица1.1)

И так мы пришли к выводу:

1. Музыка и математика возникли в процессе развития человеческого общества.

2. Музыка и математика влияли на эффективность трудовых процессов человека.

3. Применение дробных чисел сыграло важную роль в развитии музыки

4. С помощью математических законов музыка развивалась и процветала.

5. Дальнейший прогресс математики возможен через музыку, но и саму музыку надо сблизить с реальностью. Содружество математики и музыки неизбежно обогатит друг друга.

 

 


2.Геометрия и живопись.


Одним из направлений в искусстве первой четверти 20 века стал кубизм (фpaнц. cubisme, oт cube - кyб). Плacтичecкий язык кубизма основывался на деформации и разложении предметов нa геометрические плоскости, пластическом сдвиге фopмы.

Кубизм отрицает изображение предметов в том виде, как мы их представляем. Он стремится найти способ выражения их сути. Кубизм низводит формы до основных геометрических схем, раскладывает предметы на составные части и объединяет их в абстрактное целое плоского декоративного изображения.

Пабло Пикассо, одному из первых художников-кубистов, принадлежат следующие слова: «Я пишу объекты такими, как я их мыслю, а не такими, как я их вижу».

Ведь в действительности, когда мы смотрим на человеческое лицо в профиль, мы видим лишь один глаз, одну бровь. И воспринимаем объект во всей целости, домысливая, что у него, конечно же, есть и второй глаз. На кубистическом же портрете, будь то фас или профиль, объект предстает перед нами увиденный автором сразу с нескольких точек. Автор совмещает их в одном образе. Свои первые шаги художники кубисты делали именно в жанрах портрета, натюрморта, пейзажа. Как правило, это были монохромные полотна.

Многие русские художники прошли через увлечение кубизмом, часто соединяя его принципы с приемами других современных художественных направлений – футуризма и примитивизма. Специфическим вариантом интерпретации кубизма на русской почве стал кyбoфyтypизм.

Влияние кубизма в изобразительном искусстве продолжалось до 1960-х годов. К русским кубофутуристам можно отнести К. Малевича с его знаменитой картиной "Черный квадрат" (Приложение2.2).

Выдающийся российский художник Казимир Малевич уделял большое внимание изображению геометрических фигур в своих картинах, мы попытались увидеть глазами мастера его загадочный мир и притягательное искусство.

Казимир Малевич родился в 1878 году и умер в 1935.

Его знаменитая картина «Черный квадрат» (Приложение2.2) потрясла весь мир. Казалось бы что может быть проще: на белом фоне черный квадрат. Любой человек, наверное, может нарисовать такое. Но вот загадка: черный квадрат на белом фоне - картина русского художника Казимира Малевича, созданная еще в начале века, до сих пор притягивает к себе и исследователей, и любителей живописи. Как нечто сакральное, как некий миф, как символ русского авангарда.

Рассказывают, что Малевич, написав "Черный квадрат", долгое время говорил всем, что не может ни есть, ни спать. И сам не понимает, что такое сделал. И действительно, эта картина - результат, видимо, какой-то сложной работы.

Когда мы смотрим на черный квадрат, то под трещинами видим нижние красочные слои - Розовой, зеленый, по-видимому, была некая цветовая композиция, признанная в какой-то момент несостоявшейся и записанная черным квадратом.

Художник впоследствии много думал о черном квадрате, писал теоретические работы, связывал его с космическим сознанием.

Творческая жизнь художника складывалась нелегко. Он вырос в провинции и до 12-13 лет не знал, что существуют профессиональные художники. Его отец был инженером, работавшим на сахарном заводе. Семья Малевича жила вдали от культурных центров, рядом со свекловичными плантациями на Украине. В детстве будущего художника окружало в основном крестьянское искусство. Ему нравились вышивки, расписные стены и печки. Он сам умел делать росписи в крестьянском стиле. Подростком Малевич стал мечтать о том, чтобы учиться живописи. Но

мечта осуществилась, когда ему было уже больше 20 лет. После смерти отца, в 1904 году Малевич приехал в Москву, поступил в студию Рерберга и стал брать профессиональные уроки живописи. Первый успех пришел в 1912 году на выставке с эпатирующим названием "Ослиный хвост". По настоящему о Малевиче заговорили в кругах не только художественных, но и в широкой прессе после следующей выставки, на которой он показал уже так называемые супрематические полотна, иначе говоря, геометрические абстракции. Супрематизм происходит от латинского слова "supremus" , что означает высший. С тех пор Малевича, к сожалению, стали считать только художником супрематизма и даже художником одной картины "Черного квадрата". Эту славу отчасти Малевич поддерживал сам. Он считал, что "Черный Квадрат" - это вершина всего.

Малевич был разносторонним живописцем. В 20-30-е годы он написал крестьянский цикл, незадолго до смерти стал писать портреты в духе старых мастеров, пейзажи в духе импрессионизма.

Творения русских художников - авангардистов начала века взорвало художественное сознание. И в то же время супрематизм Малевича появился как закономерная стадия в развитии русского и мирового искусства.

На выставке, где были представлены его первые супрематические

Картины (Приложение2.8, 2.9), он распространил брошюру, которая называлась "От кубизма к супрематизму". Позднее он стал обращать внимание на еще более ранние истоки этого направления. Практически вся живопись, которая предшествовала искусству 20 века, была включена в этот поток, и Малевич считал, что венчает это мощное мировое движение именно искусство геометрической абстракции.

Критики упрекали Малевича в том, что он пришел к искусству, отрицающему все доброе, светлое: любовь к жизни, любовь к природе. Так, например, считал художник Александр Бенуа. А Малевич на это отвечал, что искусство движется и развивается само по себе, нравится нам это или не нравится. Искусство нас не спрашивает, как не спросило, когда создавало звезды на небе. У Малевича был культ искусства, он считал его божеством, и ему представлялось, что и звезды на небе тоже созданы художником.

14 лет назад, когда отмечалось 110-летие со дня рождения Казимира Малевича, его живопись после очень долгого забвения вернулась в выставочные залы России. С тех пор российские искусствоведы сделали немало, чтобы вернуть художника любителям живописи. Выпущена книга его теоретических трудов, сборник воспоминаний, писем Малевича. Но до сих пор белых пятен в его изографии немало. Не установлена точно даже дата его рождения - 1878 или 1879, 23 или 25 февраля. Художник сам обозначал эту дату по-разному. Казимир Малевич оставил нам тысячу загадок.

Нам понравились картины, которые связаны с геометрическими фигурами: Прямоугольник, Черный квадрат, Черный круг, Кельтский крест, Красный квадрат, Белый квадрат, Спортсмены, Супрематическая группа с использованием треугольника, Супрематизм.

(Смотрите Приложение 2.1-2.9)

И так мы пришли к выводу:

1. Живопись и геометрия возникли в процессе развития человеческого общества.

2. Изображение геометрических фигур сыграло важную роль в жизни великих художников.

Содружество математики и живописи неизбежно обогатили друг друга.


3.Геометрические скульптуры.


«Гений скульптура преобразовывает материю.… Еще вчера камень лежал на земле, его попирали ногами. Назавтра толпы людей преклоняются перед ним».

Пьер Жан Давид де Анжи



Своеобразие геометрии, выделяющее ее из других разделов математики, да и всех областей науки вообще, заключается в неразрывном, органическом соединении живого воображения со строгой логикой. В своей сущности и основе геометрия и есть пространственное воображение, пронизанное и организованное строгой логикой. В ней всегда присутствуют эти два неразрывно связанных элемента: наглядная картина и точная формулировка, строгий логический вывод.  Геометрия соединяет в себе эти противоположности, они в ней взаимно проникают, организуют и направляют друг друга. Стоит лишь вспомнить классические творения архитектуры, начиная с древнейших пирамид, как сразу становится очевидным, что геометрия в некотором смысле относится к искусству. Искусство лучше всего воспринимать непосредственно. Тому способствуют гравюры,  они образуют своего рода художественно-геометрический фильм, дающий зрителю редкую возможность увидеть геометрическое начало во многих явлениях природы и красоту — в чисто геометрических конструкциях и построениях.

Скульптура – это искусство преображения пространства посредством объема. Каждая культура приносит свое понимание соотношения объема и пространства: античность понимает объем тела как расположение в пространстве, средние века – пространство как ирреальный мир, эпоха барокко – пространство как среда, захваченная скульптурным объемом и покоренная им, классицизм – равновесие пространства, объема и формы. XIX век позволил пространству “войти” в мир скульптуры, подарив объему текучесть в пространстве, а XX век, продолжив этот процесс, сделал скульптуру подвижной и проходимой для пространства. 
Лаконичность скульптуры связана с тем фактом, что она практически лишена сюжетности и повествовательности. Поэтому ее можно назвать выразителем отвлеченного в конкретном. Легкость восприятия скульптуры - только кажущаяся. Скульптура символична, условна и художественна, а значит сложна и глубинна для восприятия. Основными эстетическими средствами скульптуры выступают: объем, силуэт, пропорции, светотень, т.е. построение объемной формы, пластическая моделировка, разработка силуэта, фактура, материал, иногда цвет. Главное средство выражения в скульптуре – ее объем. Она смотрится со всех сторон: возможен круговой осмотр или восприятие с нескольких точек зрения. Главный предмет изображения в скульптуре – человек. Но скульптура не обращена к обыденной, случайной, будничной жизни. Она увековечивает и запечатлевает все самое прекрасное, возвышенное, героическое в человеке. Скульптура может правдиво показать фигуру, лицо, сложные переживания, настроения, характер, порывы, мечты и надежды человека. Средства изобразительности и выразительности скульптуры – свет и тень. Плоскости и поверхности изваянной фигуры, отражая свет и бросая тени, создают пространственную игру форм, эстетически воздействующую на зрителей. Бронзовая скульптура допускает резкое разделение света и тени, проницаемый же для световых лучей мрамор позволяет передать тонкую светотеневую игру. Эта особенность мрамора использовалась древними художниками.

Миру известны фамилии многих талантливых скульпторов, чьи работы заставляют нас преклоняться перед ними, восхищаться их детищами.

Самой известной в мире скульптурой является творение Микеланджело «Давид» (Приложение3.1). Микеланджело решил отойти от традиционного изображения этого персонажа Ветхого Завета: он не показал его как победителя с головой Голиафа в руках. Давид работы Микеланджело - молодой и, кажется, только готовится к тяжелой битве с великаном. Когда работа была завершена, комитет жителей Флоренции и художников решил, что скульптура достойна, украшать главную площадь города. Поскольку Флоренция в то время была центром искусств, это признание стало большой честью даже для прославленного еще при жизни Микеланджело.

Копия Венеры Милосской (Приложение3.2) часто украшает холлы музеев, государственных учреждений и частных особняков, так что не признать ее популярность невозможно. Автор статуи, которая сейчас выставлена в парижском Лувре, неизвестен, равно как и время ее создания. Скульптуру нашел крестьянин на острове Милос, расположенном в Эгейском море. Во время перипетий, связанных с перевозкой скульптуры во Францию, руки Венеры были потеряны. Однако говорят, что в одной руке богиня держала щит, а в другой - зеркальце. Есть версия и о яблоке, врученном Афродите Парисом.

Самая известная работа Огюста Родена «Мыслитель» (Приложение3.3), как и многие другие его творения, была задумана как часть композиции на тему «Божественной комедии» Данте. Планировалось, что скульптурная группа украсит ворота музея декоративного искусства в Париже. Роден назвал свою работу «Поэт», поскольку она изображала самого Данте, скульптуру которого должны были разместить над воротами. Однако мастер понял, что статуя имеет широкую, более универсальную тематику: человек, который переживает жестокую внутреннюю борьбу.

Еще много можно говорить о прекрасных произведениях, которые радовали, радуют, и еще очень долго будут радовать нас.

Но предметом нашего внимания стали геометрические скульптуры.

Если в физике можно найти лирика, то и в математике наверняка может скрываться творческая личность. Примером может быть Льюис Кэрролл, автор знаменитых сказочных историй о девочке Алисе, или же Закари Абель (Zachary Abel), аспирант Массачусетского технологического института, автор удивительных геометрические скульптур из канцелярских принадлежностей и других мелочей, которые могут оказаться под рукой.

Закари Абель преподает математику в вузах США, проводит летние математические олимпиады, читает семинары, а в Массачусетском технологическом институте он занимается исследованиями в области геометрии и теоретической информатики. Какую же роль играют в этих исследованиях необычные геометрические скульптуры, которые создает математик?

Многогранники и шары, а также прочие геометрические скульптуры, которые Закари Абель создает из скрепок и биндеров, булавок и игральных карт, резинок и деревянных палочек от эскимо, нужны для того, чтобы обнаружить скрытую геометрическую красоту канцелярских принадлежностей и других скромных материалов. Именно так объясняет новоиспеченный скульптор свои необычные творческие работы. Будучи человеком педантичным и усидчивым, дисциплинированным и последовательным, Закари Абель может потратить несколько часов свободного времени, созерцая ту или иную геометрическую фигуру в учебнике, чтобы потом воссоздать увиденное в трехмерном изображении. И неважно, что за материал окажется под рукой, ведь ученый - тот же изобретатель, только с техническим складом ума.

Так и появляются на свет удивительные фигуры, вроде Impenetraball, плотного шара из 132 канцелярских биндеров, или же светящегося изнутри "ежика", созданного из пластмассовых палочек от леденцов, скрепленных резинками "для денег". (Приложение3.4-3.7)

Оказывается, что творчество и наука вполне могут сосуществовать, и даже удивлять результатами своего взаимодействия.



Заключение.

Изучив историю развития геометрии, мы выяснили, какую роль она играет в музыке, живописи, скульптурах.

Все три рассмотренных направления дают нам довольно полное и ясное представление о роли геометрии в различных видах искусства. Благодаря данной работе мы познакомилась с истоками музыки более подробно, попытались посмотреть глазами великих людей на некоторые их творения.

Пришли к выводу: геометрия и есть искусство.

Заинтересовались в более глубоком изучении предмета математики.











Приложение

Приложение 1.1

Таблица 1

Общие понятия

Музыка

Математика

РИТМ – всякое равномерное чередование, происходящее с определенной частотой и последовательностью

Ритм определяет характер произведения, изменяя ритм можно менять образы героев

Ряд натуральных чисел 1,2,3,4,5,6,7,8,9… Основа числового ритма – это каждое последующее число которое состоит из предыдущего если к нему прибавить единицу.

ПРОПОРЦИЯ – целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к самому целому.

Характер произведения может измениться, если изменить длительность звучания нот. Длительности нот уменьшаются - темп произведения быстрее и наоборот.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором меньший отрезок относится к большему, как больший отрезок ко всему отрезку.

ПРОТИВОПОЛОЖНОСТЬ – это предмет или явление, совершенно не сходное по признакам со сравниваемым.

Консонанс – диссонанс, подъем - спад мелодии, быстрый - медленный темп, громкое - тихое звучание, отрывисто – связно.

Сумма – разность, произведение – частное, целые числа – дробные числа, четные числа – нечетные числа.

Приложение2.1 

Прямоугольник.






Приложение2.2 Черный квадрат

Приложение2.3 Черный круг

Приложение2.4 Кельтский крест

Приложение2.5Красный квадрат

Приложение2.6 Белый квадрат















Приложение2.7 Спортсмены Дата:1930-1931 Размер картины: 164x142 см Материал: Холст, масло Музей: Государственный Русский музей, Санкт-Петербург Художник: Казимир Северинович Малевич

Приложение2.8 Супрематическая группа с использованием треугольника
Дата: 1920-еРазмер картины: 16.4x20.9 см Материал: Бумага, карандаш



Приложение2.9 Супрематизм
Дата: 1915 Размер картины: 60x70 см Материал: Холст, масло

Музей: Музей Людвига, Кёльн


Приложение3.1

Приложение3.2

Приложение3.3


Приложение3.4


Приложение3.5

Приложение3.6

Приложение3.7


Список использованной литературы. 1. В. Мириманов. У истоков кубизма. М., 1980 г. 2. В. Крючкова. Кубизм, орфизм, пуризм. 1906 -1920. История искусства ХХ века. М.: «Галарт», 2000 г 3. С. Левин. Феномен "Черного квадрата". М., 1990 г. 4. Н.Дмитриева. Пикассо. М., 1971 г. 5. Д. Шевалье. Пикассо. Голубой и розовый периоды. М., 1986 г. 6. Н. Платонов, В. Синюков. Энциклопедический словарь. 7. Демьянов В.П. Геометрия и Марсельеза. – М.: Знание, 1986. 8. Каган В.Ф. Очерки по геометрии. – М.: Московский университет, 1963. 9. Математика XIX века. – М.: Наука, 1981. Свечников А.А. Путешествие в историю математики или как люди научились считать. – М.: Просвещение, 1995. 10. Юшкевич А.П. История математики в России. – М.: Наука, 1968. 11. Энциклопедия для детей «Аванта +, Математика, том 11». 12. Интернет-ресурсы.


29



Получите в подарок сайт учителя

Предмет: Математика

Категория: Прочее

Целевая аудитория: 5 класс

Скачать
Геометрия и искусство (реферативная работа)

Автор: Брутян В.Цывкина Т.,Демиденко Л.,Владимиров Е.,Суслов В.

Дата: 19.04.2015

Номер свидетельства: 203078

Похожие файлы

object(ArrayObject)#864 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(152) "Работы моих учеников. Гриник М. "орнаментальное и геометрическое искусство М.Эшера""
    ["seo_title"] => string(80) "raboty_moikh_uchenikov_grinik_m_ornamentalnoe_i_geometricheskoe_iskusstvo_m_eshe"
    ["file_id"] => string(6) "505158"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1553828817"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства