kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Презентация на тему: "Модели задач теории игр в системах компьютерной математики"

Нажмите, чтобы узнать подробности

Презентация на тему: "Модели задач теории игр в  системах компьютерной математики"

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Презентация на тему: "Модели задач теории игр в системах компьютерной математики"»

Модели задач теории игр в системах компьютерной математики Выполнила: Байкова Т. С.  Проверила: Кормилицына Т. В.

Модели задач теории игр в системах компьютерной математики

Выполнила: Байкова Т. С.

Проверила: Кормилицына Т. В.

На практике часто приходится сталкиваться с задачами, в которых необходимо принимать решения в условиях неопределенности, т.е. возникают ситуации, в которых две стороны преследуют различные цели и результаты действия каждой из сторон зависят от мероприятий противника (или партнера).

На практике часто приходится сталкиваться с задачами, в которых необходимо принимать решения в условиях неопределенности, т.е. возникают ситуации, в которых две стороны преследуют различные цели и результаты действия каждой из сторон зависят от мероприятий противника (или партнера).

Игра – это математическая модель реальной конфликтной ситуации. Стороны, участвующие в конфликте, называются игроками. Исход конфликта называется выигрышем. Правила игры – это система условий, определяющая варианты действий игроков; объем информации каждого игрока о поведении партнеров; выигрыш, к которому приводит каждая совокупность действий.

Игра – это математическая модель реальной конфликтной ситуации. Стороны, участвующие в конфликте, называются игроками. Исход конфликта называется выигрышем. Правила игры – это система условий, определяющая варианты действий игроков; объем информации каждого игрока о поведении партнеров; выигрыш, к которому приводит каждая совокупность действий.

Раздел Теория игр представлен тремя онлайн-калькуляторами:

Раздел Теория игр представлен тремя онлайн-калькуляторами:

  • 1. Решение матричной игры. В таких задачах задана платежная матрица. Требуется найти чистые или смешанные стратегии игроков и, цену игры. Для решения необходимо указать размерность матрицы и метод решения.
  • 2. Биматричная игра. Обычно в такой игре задают две матрицы одинакового размера выигрышей первого и второго игроков. Строки этих матриц соответствуют стратегиям первого игрока, а столбцы матриц – стратегиям второго игрока. При этом в первой матрице представлены выигрыши первого игрока, а во второй матрице – выигрыши второго.
  • 3. Игры с природой. Используется, когда необходимо выбрать управленческое решение по критериям Максимакса, Байеса, Лапласа, Вальда, Сэвиджа, Гурвица.
Каждая формализованная игра (модель) характеризуется:

Каждая формализованная игра (модель) характеризуется:

  • 1. количеством субъектов - игроков, участвующих в конфликте;
  • 2. вариантом действий для каждого из игроков, называемых стратегиями;
  • 3. функциями выигрыша или проигрыша (платежа) исхода конфликта;
Статистические игры – это игры с частичной неопределенностью. В статистической игре всегда имеется один активный игрок, имеющий свои стратегии и цели. Другим игроком (пассивным, не преследующим своих целей) является природа. Этот игрок реализует свои стратегии (состояния природы) случайным образом, причем вероятность реализации того или иного состояния можно оценить с помощью статистического эксперимента.

Статистические игры – это игры с частичной неопределенностью. В статистической игре всегда имеется один активный игрок, имеющий свои стратегии и цели. Другим игроком (пассивным, не преследующим своих целей) является природа. Этот игрок реализует свои стратегии (состояния природы) случайным образом, причем вероятность реализации того или иного состояния можно оценить с помощью статистического эксперимента.

Оптимальные стратегии в любой игре обладают важным свойством, а именно – устойчивостью . Это означает, что каждый из игроков не заинтересован в отходе от своей оптимальной стратегии, т. к. это ему невыгодно. Отклонение от оптимальной стратегии игрока А приводит к уменьшению его выигрыша, а одностороннее отклонение игрока В – к увеличению проигрыша. Говорят, что седловая точка дает положение равновесия .

Оптимальные стратегии в любой игре обладают важным свойством, а именно – устойчивостью . Это означает, что каждый из игроков не заинтересован в отходе от своей оптимальной стратегии, т. к. это ему невыгодно. Отклонение от оптимальной стратегии игрока А приводит к уменьшению его выигрыша, а одностороннее отклонение игрока В – к увеличению проигрыша. Говорят, что седловая точка дает положение равновесия .

Основной теоремой в теории конечных антагонистических игр является Теорема фон Неймана :  каждая конечная матричная игра имеет, по крайней мере, одно оптимальное решение, возможно, среди смешанных стратегий .

Основной теоремой в теории конечных антагонистических игр является Теорема фон Неймана : каждая конечная матричная игра имеет, по крайней мере, одно оптимальное решение, возможно, среди смешанных стратегий .

В заключение данной работы можно сделать вывод о необходимости использования теории игр в современных экономических условиях.

В заключение данной работы можно сделать вывод о необходимости использования теории игр в современных экономических условиях.


Получите в подарок сайт учителя

Предмет: Математика

Категория: Презентации

Целевая аудитория: Прочее

Скачать
Презентация на тему: "Модели задач теории игр в системах компьютерной математики"

Автор: Байкова Татьяна Сергеевна

Дата: 01.11.2017

Номер свидетельства: 436132

Похожие файлы

object(ArrayObject)#851 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(164) "Исследование возможностей информационных технологий, используемых на уроках математики"
    ["seo_title"] => string(80) "issledovanie_vozmozhnostei_informatsionnykh_tekhnologii_ispolzuemykh_na_urokakh_"
    ["file_id"] => string(6) "635286"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1691055753"
  }
}
object(ArrayObject)#873 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(77) "Моделирование,формализация,визуализация "
    ["seo_title"] => string(45) "modielirovaniie-formalizatsiia-vizualizatsiia"
    ["file_id"] => string(6) "101006"
    ["category_seo"] => string(11) "informatika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1402402990"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1280 руб.
2130 руб.
1190 руб.
1980 руб.
1250 руб.
2090 руб.
1500 руб.
2500 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства