Просмотр содержимого документа
«Презентация на тему: "Модели задач теории игр в системах компьютерной математики"»
Модели задач теории игр в системах компьютерной математики
Выполнила: Байкова Т. С.
Проверила: Кормилицына Т. В.
На практике часто приходится сталкиваться с задачами, в которых необходимо принимать решения в условиях неопределенности, т.е. возникают ситуации, в которых две стороны преследуют различные цели и результаты действия каждой из сторон зависят от мероприятий противника (или партнера).
Игра – это математическая модель реальной конфликтной ситуации. Стороны, участвующие в конфликте, называются игроками. Исход конфликта называется выигрышем. Правила игры – это система условий, определяющая варианты действий игроков; объем информации каждого игрока о поведении партнеров; выигрыш, к которому приводит каждая совокупность действий.
Раздел Теория игр представлен тремя онлайн-калькуляторами:
1. Решение матричной игры. В таких задачах задана платежная матрица. Требуется найти чистые или смешанные стратегии игроков и, цену игры. Для решения необходимо указать размерность матрицы и метод решения.
2. Биматричная игра. Обычно в такой игре задают две матрицы одинакового размера выигрышей первого и второго игроков. Строки этих матриц соответствуют стратегиям первого игрока, а столбцы матриц – стратегиям второго игрока. При этом в первой матрице представлены выигрыши первого игрока, а во второй матрице – выигрыши второго.
3. Игры с природой. Используется, когда необходимо выбрать управленческое решение по критериям Максимакса, Байеса, Лапласа, Вальда, Сэвиджа, Гурвица.
Каждая формализованная игра (модель) характеризуется:
1. количеством субъектов - игроков, участвующих в конфликте;
2. вариантом действий для каждого из игроков, называемых стратегиями;
3. функциями выигрыша или проигрыша (платежа) исхода конфликта;
Статистические игры – это игры с частичной неопределенностью. В статистической игре всегда имеется один активный игрок, имеющий свои стратегии и цели. Другим игроком (пассивным, не преследующим своих целей) является природа. Этот игрок реализует свои стратегии (состояния природы) случайным образом, причем вероятность реализации того или иного состояния можно оценить с помощью статистического эксперимента.
Оптимальные стратегии в любой игре обладают важным свойством, а именно – устойчивостью . Это означает, что каждый из игроков не заинтересован в отходе от своей оптимальной стратегии, т. к. это ему невыгодно. Отклонение от оптимальной стратегии игрока А приводит к уменьшению его выигрыша, а одностороннее отклонение игрока В – к увеличению проигрыша. Говорят, что седловая точка дает положение равновесия .
Основной теоремой в теории конечных антагонистических игр является Теорема фон Неймана:каждая конечная матричная игра имеет, по крайней мере, одно оптимальное решение, возможно, среди смешанных стратегий.
В заключение данной работы можно сделать вывод о необходимости использования теории игр в современных экономических условиях.