kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Презентация на тему: "Координаты вектора"

Нажмите, чтобы узнать подробности

Презентация к уроку геометрии в 9 классе на тему "Координаты вектора". Урок объяснения нового материала. 

Цели:

  • Образовательная:
    • изучение и первичное осознание нового учебного материала,
    • осмысление связей и отношений в объектах изучения.
  • Развивающая: развивать пространственное воображение, умение анализировать.
  • Воспитательные:
    • воспитывать умение осмысленно слушать,
    • привитие аккуратности в исполнении геометрического чертежа,
    • воспитание честности.

Задачи:

  • Дать понятия: единичные координатные векторы, координаты вектора, разложение вектора по единичным векторам i и j;
  • показать образцы оформления записей;
  • отработать полученные знания на примерах;
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Презентация на тему: "Координаты вектора"»

Домашнее задание:

Домашнее задание:

  • П 87 – учить понятия, свойства
  • 6, № 8 – рабочая тетрадь
  • 918, № 926 (б, г)
23.11.2015  Координаты вектора

23.11.2015 Координаты вектора

Если векторы a и b коллинеарны и a ≠ 0, то существует такое число k, что b = ka Пусть a и b – два данных вектора. Если вектор p представлен в виде p = xa + yb, где x и y – числа, то говорят вектор p разложен по векторам a и b. Числа x и y называются коэффициентами разложения. Любой вектор можно разложить по двум неколиннеарным векторам, причем коэффициенты разложения единственны
  • Если векторы a и b коллинеарны и a ≠ 0, то существует такое число k, что b = ka
  • Пусть a и b – два данных вектора. Если вектор p представлен в виде p = xa + yb, где x и y – числа, то говорят вектор p разложен по векторам a и b.
  • Числа x и y называются коэффициентами разложения.
  • Любой вектор можно разложить по двум неколиннеарным векторам, причем коэффициенты разложения единственны
ОВ = -6i + 2j = c = 5i – 3j = 0 = o∙ i + o∙ j = В прямоугольной системе координат отложим от точки О единичные векторы i и j" width="640"
  • Векторы i и j называются координатными векторами.
  • i ↑↑Ox, │i│=1; j↑↑Oy, │j│=1
  • p = xi + yj
  • p {x; y} – где x, y координаты вектора p
  • Например:
  • ОА = 4i + 5j =
  • ОВ = -6i + 2j =
  • c = 5i – 3j =
  • 0 = o∙ i + o∙ j =
  • В прямоугольной системе координат отложим от точки О единичные векторы i и j

ОА {4; 5}

OB {-6; 2}

c {5; -3}

0 {0; 0}

ОА – радиус-вектор

y P (3;-5) M m p {3;-5} p =3 i –5 j x j О  1 i p M (0;4) «Геометрия 7-9» Л.С. Атанасян и др. m {0; 4} P m =0 i + 4 j m = 4 j 5 5

y

P (3;-5)

M

m

p {3;-5}

p =3 i –5 j

x

j

О

1

i

p

M (0;4)

«Геометрия 7-9» Л.С. Атанасян и др.

m {0; 4}

P

m =0 i + 4 j

m = 4 j

5

5

y N (-4;-5) n {-4;-5} n = –4 i –5 j x c j C О  1 i C (-3,5;0) n c {-3,5;0} «Геометрия 7-9» Л.С. Атанасян и др.  N c =-3,5 i + 0 j c = -3,5 i 6 6

y

N (-4;-5)

n {-4;-5}

n = –4 i –5 j

x

c

j

C

О

1

i

C (-3,5;0)

n

c {-3,5;0}

«Геометрия 7-9» Л.С. Атанасян и др.

N

c =-3,5 i + 0 j

c = -3,5 i

6

6

y Подумайте, как найти координаты вектора, если он не является радиус-вектором? c x j N (-3;-1)  N  1 О i c {-3;-1} «Геометрия 7-9» Л.С. Атанасян и др. c = –3 i – 1 j 7 7

y

Подумайте,

как найти

координаты вектора,

если он

не является

радиус-вектором?

c

x

j

N (-3;-1)

N

1

О

i

c {-3;-1}

«Геометрия 7-9» Л.С. Атанасян и др.

c = –3 i 1 j

7

7

Свойства : Если векторы a = xi + yj и b = ki + lj равны, то x = k и y = l. Координаты равных векторов соответственно равны. Каждая координата суммы двух или векторов равна сумме соответствующих координат этих векторов. Каждая координата разности двух или векторов равна разности соответствующих координат этих векторов.

Свойства :

  • Если векторы a = xi + yj и b = ki + lj равны, то x = k и y = l. Координаты равных векторов соответственно равны.
  • Каждая координата суммы двух или векторов равна сумме соответствующих координат этих векторов.
  • Каждая координата разности двух или векторов равна разности соответствующих координат этих векторов.

Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число. Пример:
  • Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число.
  • Пример:

Найти координаты вектора

если известно, что

Координаты вектора Разложение вектора по координатным векторам a = – 6 i + 9 j a {-6; 9} ? ? n {-8; 0} n = – 8 i + 0 j c {0; -7} ? c = 0 i – 7 j m {4; -3} m =4 i – 3 j ? r = –5 i  – 8 j ? r {-5;-8} «Геометрия 7-9» Л.С. Атанасян и др. s {-7; 0} s = –7 i + 0 j ? e {0; 21} e = 0 i  + 21 j ? q {0; 0} q =0 i  + 0 j ? 10 10

Координаты вектора

Разложение вектора по координатным векторам

a = – 6 i + 9 j

a {-6; 9}

?

?

n {-8; 0}

n = – 8 i + 0 j

c {0; -7}

?

c = 0 i 7 j

m {4; -3}

m =4 i 3 j

?

r = –5 i 8 j

?

r {-5;-8}

«Геометрия 7-9» Л.С. Атанасян и др.

s {-7; 0}

s = –7 i + 0 j

?

e {0; 21}

e = 0 i + 21 j

?

q {0; 0}

q =0 i + 0 j

?

10

10

Координаты вектора Разложение вектора по координатным векторам n {-2; 3} n = – 2 i + 3 j k = 4 i + 2 j k {4; 2} «Геометрия 7-9» Л.С. Атанасян и др. a = –4 i + 4 j a {-4; 4} b = 7 j b {0; 7} 11 11

Координаты вектора

Разложение вектора по координатным векторам

n {-2; 3}

n = – 2 i + 3 j

k = 4 i + 2 j

k {4; 2}

«Геометрия 7-9» Л.С. Атанасян и др.

a = –4 i + 4 j

a {-4; 4}

b = 7 j

b {0; 7}

11

11

y Разложите векторы по координатным векторам и и найдите их координаты . c b j i a f j x i О  1 e «Геометрия 7-9» Л.С. Атанасян и др. d 12 12

y

Разложите векторы

по координатным

векторам и

и найдите их

координаты .

c

b

j

i

a

f

j

x

i

О

1

e

«Геометрия 7-9» Л.С. Атанасян и др.

d

12

12

y Дано: ОА = ОС = 10, ОВ =6, СА О y . Найдите: координаты векторов ОА, ОС, АС. А 10 Решение: 8 x В О 6 OA{-6; 8} 10 OC{-6;-8} Гаврилова Н.Ф. «Поурочные разработки по геометрии: 9 класс». – М.: ВАКО, 2007. – 320 с. – (В помощь школьному учителю) AC{0;-16} С Теорема Пифагора: a 2 + b 2 = c 2 13 13

y

Дано: ОА = ОС = 10, ОВ =6, СА О y . Найдите:

координаты векторов ОА, ОС, АС.

А

10

Решение:

8

x

В

О

6

OA{-6; 8}

10

OC{-6;-8}

Гаврилова Н.Ф. «Поурочные разработки по геометрии: 9 класс». – М.: ВАКО, 2007. – 320 с. – (В помощь школьному учителю)

AC{0;-16}

С

Теорема Пифагора:

a 2 + b 2 = c 2

13

13


Получите в подарок сайт учителя

Предмет: Математика

Категория: Презентации

Целевая аудитория: 9 класс

Скачать
Презентация на тему: "Координаты вектора"

Автор: Никитенко Екатерина Николаевна

Дата: 21.12.2015

Номер свидетельства: 268707

Похожие файлы

object(ArrayObject)#866 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(120) "Презентация к уроку геометрии 9 класс по теме "Координаты вектора""
    ["seo_title"] => string(66) "prezentatsiia_k_uroku_geometrii_9_klass_po_teme_koordinaty_vektora"
    ["file_id"] => string(6) "621127"
    ["category_seo"] => string(9) "geometria"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1671610037"
  }
}
object(ArrayObject)#888 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(102) "Презентация к уроку на тему: "Координаты вектора" 9 класс"
    ["seo_title"] => string(60) "priezientatsiia_k_uroku_na_tiemu_koordinaty_viektora_9_klass"
    ["file_id"] => string(6) "412369"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1493474099"
  }
}
object(ArrayObject)#866 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(165) "Презентация на тему "Прямоугольная система координат в пространстве.Координаты вектора." "
    ["seo_title"] => string(96) "priezientatsiia-na-tiemu-priamoughol-naia-sistiema-koordinat-v-prostranstvie-koordinaty-viektora"
    ["file_id"] => string(6) "150414"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1420475436"
  }
}
object(ArrayObject)#888 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(208) "Презентация к уроку геометрии 9 класс по теме "Связь между координатами вектора и координатами его начала и конца""
    ["seo_title"] => string(80) "prezentatsiia_k_uroku_geometrii_9_klass_po_teme_sviaz_mezhdu_koordinatami_vektor"
    ["file_id"] => string(6) "624383"
    ["category_seo"] => string(9) "geometria"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1675004277"
  }
}
object(ArrayObject)#866 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(274) "Презентация к уроку по геометрии 9 класс по теме: "Связь между координатами вектора и координатами его начала и конца.Простейшие задачи в координатах""
    ["seo_title"] => string(80) "prezentatsiia_k_uroku_po_geometrii_9_klass_po_teme_sviaz_mezhdu_koordinatami_vek"
    ["file_id"] => string(6) "534337"
    ["category_seo"] => string(9) "geometria"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1578075264"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1860 руб.
2660 руб.
1650 руб.
2350 руб.
1360 руб.
1940 руб.
1850 руб.
2640 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства