Просмотр содержимого документа
«Исследовательская работа " Логарифмическая спираль " ученика 10 " А" класса Табуева Хетага»
МБОУ "СОШ №1 им. Героя Советского Союза
П.В. Масленникова ст. Архонская".
Работу выполнил:
Табуев Хетаг,
учащийся 10 "А" класса
Научный руководитель :
Кусей Л.А.
учитель математики
1 категории.
Спираль Архимеда
Архимед (287 г. до н. э. -- 212г. до н. э.) -- древнегреческий математик, физик и инженер из Сиракуз (остров Сицилия). Он сделал множество открытий в геометрии. Заложил основы механики, гидростатики, автор ряда важных изобретений.
Архимедова спираль была открыта Архимедом. Это произошло в III веке до н.э., когда он экспериментировал с компасом. Он тянул стрелку компаса с постоянной скоростью, вращая сам компас по часовой стрелке. Получившаяся кривая была спиралью, которая сдвигались на ту же величину, на которую поворачивался компас, и между витками спирали сохранялось одно и то же расстояние.
Архимедову спираль использовали в древности, как наилучший способ определения площади круга. С ее помощью был улучшен древний греческий метод нахождения площади круга через измерение длины окружности. Спираль дала возможность более точного измерения длины окружности, а следовательно, и площади круга.
В III веке да нашей эры Архимед на основе своей спирали изобрёл винт, который успешно применяли для передачи воды в оросительные каналы из водоёмов, расположенных ниже. Позже на основе винта Архимеда создали шнек («улитку»). Его очень известная разновидность - винтовой ротор в мясорубке. Шнек используют в механизмах для перемешивания материалов различной консистенции.
Определение спирали Архимеда
Кривую можно рассматривать как траекторию точки, равномерно движущейся по лучу, исходящему из полюса, в то время как этот луч равномерно вращается вокруг полюса.
Представим себе циферблат часов с длинной стрелкой. Стрелка движется по окружности циферблата. А по стрелке в это время перемещается с постоянной скоростью маленький жучок. Траектория движения жучка представляет собой спираль Архимеда.
Построение спирали Архимеда
Чтобы понять, как получается спираль Архимеда, отметим на чертеже точку, которая является центром спирали Архимеда.
Построим из центра спирали окружность, радиус которой равен шагу спирали. Шаг спирали Архимеда равен расстоянию, которое проходит точка по поверхности круга за один его полный оборот.
Разделим окружность на несколько равных частей с помощью прямых линий. На первой линии откладываем одно деление, на второй-два деления, на третьей-три деления и т. д. Затем чертим соответствующее число дуг из центра окружности, проходящих через первое деление,2-ое и т. д.
Расстояния витков правой спирали, считая по лучу, равны ,а расстояния соседних витков, равны.
Уравнение Архимедовой спирали имеет вид:
В полярных координатах кривая может быть записана как
либо
,
где — угол отклонения точки от нуля, r — радиус-вектор точки, a — коэффициент, отвечающий за расстояние между витками, b — коэффициент, отвечающий за густоту витков.
В параметрической форме может быть записана как
где a, b — действительные числа, t — аналог в выражении в полярный координатах
Полярный угол мы отсчитываем от полярной оси, считая его положительным против часовой стрелки.
При вращении луча против часовой стрелки получается правая спираль (синяя линия) при вращении -- по часовой стрелке -- левая спираль (красная линия).
Полярный радиус-вектор мы будем брать как положительным, так и отрицательным; в первом случае его откладывают в направлении, определяемом углом , а во втором в противоположном направлении.
Логарифмическая спираль
Логарифмическая спираль была впервые описана Декартом (1638 г., опубликовано в 1657 г). Декарт искал кривую, обладающую свойством, подобным свойству окружности, так чтобы касательная в каждой точке образовывала с радиус-вектором в каждой точке один и тот же угол. Отсюда и название равноугольная. Он показал, что это условие равносильно тому, что полярные углы для точек кривой пропорциональны логарифмам радиус-векторов. Отсюда и второе название: логарифмическая спираль. Независимо от Декарта она была открыта Э. Торричелли в 1644 г. Свойства логарифмической спирали исследовал Я. Бернулли (1692 г.). Её название предложено П. Вариньоном (1704 г.).
Определение логарифмической спирали
Логарифмическая спираль - кривая, которая пересекает все лучи, выходящие из одной точки О, под одним и тем же углом.
Основные свойства логарифмической спирали
1.Угол, составляемый касательной в произвольной точке логарифмической спирали с радиус-вектором точки касания, постоянный и зависит лишь от параметра .
2.Параметр m определяет, насколько плотно и в каком направлении закручивается спираль. В предельном случае, когда =0 спираль вырождается в окружность радиуса . Наоборот, когда стремится к бесконечности ( спираль стремится к прямой линии. Угол, дополняющий до 90°, называется наклоном спирали.
3.Размер витков логарифмической спирали постепенно увеличивается, но их форма остаётся неизменной.
4. Если угол возрастает или убывает в арифметической прогрессии, то возрастает (убывает) в геометрической.
5.Поворачивая полярную ось вокруг полюса, можно добиться полного уничтожения параметра a и привести уравнение к виду r=, где -- новый параметр.
6. Радиус кривизны в каждой точке спирали пропорционален длине дуги спирали от ее начала до этой точки.
Логарифмическая спираль в природе.
Логарифмическая спираль - единственный тип спирали, не меняющей своей формы при увеличении размеров. Это свойство объясняет, почему логарифмическая спираль так часто встречается в природе.
Царство животных предоставляет нам примеры спиралей раковин, улиток и моллюсков.
Все эти формы указывают на природное явление: процесс накручивания связан с процессом роста. В самом деле, раковина улитки - это не больше, не меньше, чем конус, накрученный на себя. Если мы внимательно посмотрим на рост раковин и рогов, то заметим еще одно любопытное свойство: рост происходит только на одном конце. И это свойство сохраняет форму полностью уникальную среди кривых в математике, форму логарифмической, или равноугольной спирали.
Галактики, штормы и ураганы дают впечатляющие примеры логарифмических спиралей.
И наконец, в любом месте, где есть природное явление, в котором сочетаются расширение или сжатие с вращением появляется логарифмическая спираль.
В растительном мире примеры еще более бросаются в глаза, потому что у растения может быть бесконечное число спиралей, а не только одна спираль у каждого.
Расположение семечек в любом подсолнечнике, чешуек в любом ананасе и другие разнообразные виды растений, простые ромашки… дают нам настоящий парад переплетающихся спиралей.
Заключение
Логаpифмическую спиpаль называют самой кpасивой из математических кpивых. Эта спиpаль встpечается в пpиpоде уже миллионы лет, ведь это единственная математическая кpивая, следующая фоpме pоста, выpаженной в “чудесной спиpали” (Spira Mirabilis), котоpую обычно называют pаковиной наутилуса. Две части этой спиpали могут отличаться pазмеpами, но никак не фоpмой. У этой спиpали нет пpедельной точки.