Просмотр содержимого документа
«Рабочая программа курса «Абитуриент» по математике Решение задач основных тем курса математики»
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА
Учащийся должен знать/понимать:
существо понятия алгоритма; примеры алгоритмов; • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
значение математики как науки;
значение математики в повседневной жизни, а также как прикладного инструмента в будущей профессиональной деятельности.
уметь:
решать задания, по типу приближенных к заданиям государственной итоговой аттестации (базовую часть)
иметь опыт (в терминах компетентностей);
осуществлять диагностику проблемных зон и коррекцию допущенных ошибок;
повышать общематематическую компетентность сначала в классе, в группе, затем самостоятельно;
работать с информацией, в том числе и получаемой посредством Интернет.
Основные требования к учащимся 9 класса
Уметь:
- составлять буквенные выражения и формулы по условиям задач, осуществлять подстановку одного выражения в другое, осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, выражать из формул одни переменные через другие;
- выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
- применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
- решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы уравнений;
- решать линейные неравенства с одной переменной и их системы;
- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, учитывать ограничения цело численности, диапазона изменения величин;
- определять координаты точки в координатной плоскости, строить точки с заданными координатами; решать задачи на координатной плоскости: изображать различные соотношения между двумя переменными, находить координаты точек пересечения графиков;
- применять графические представления при решении уравнений, систем, неравенств;
- строить графики изученных функций, описывать их свойства, определять свойства функции по ее графику.
Применять полученные знания:
- для выполнения расчетов по формулам, понимая формулу как алгоритм вычисления; для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;
- при моделировании практических ситуаций и исследовании построенных моделей (используя аппарат алгебры);
- при интерпретации графиков зависимостей между величинами, переводя на язык функций и исследуя реальные зависимости.
Элементы логики, комбинаторики, статистики и теории вероятностей
Уметь:
- оценивать логическую правильность рассуждений, в своих доказательствах использовать только логически корректные действия, понимать смысл контр примеров;
- извлекать информацию, представленную в таблицах, на диаграммах, на графиках; составлять таблицы; строить диаграммы и графики;
- решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
- вычислять средние значения результатов измерений;
- находить частоту события.
Применять полученные знания:
- при записи математических утверждений, доказательств, решении задач;
- в анализе реальных числовых данных, представленных в виде диаграмм, графиков;
- при решении учебных и практических задач, осуществляя систематический перебор вариантов;
- при сравнении шансов наступления случайных событий.
СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА
1.Числа, числовые выражения, проценты
Натуральные числа. Арифметические действия с натуральными числами. Свойства арифметических действий. Делимость натуральных чисел. Делители и кратные числа. Признаки делимости на 2, 3, 5, 9, 10. Деление с остатком. Простые числа. Разложение натурального числа на простые множители. Нахождение НОК, НОД. Обыкновенные дроби, действия с обыкновенными дробями. Десятичные дроби, действия с десятичными дробями. Применение свойств для упрощения выражений. Тождественно равные выражения. Проценты. Нахождение процентов от числа и числа по проценту.
2. Буквенные выражения
Выражения с переменными. Тождественные преобразования выражений с переменными. Значение выражений при известных числовых данных переменных.
Одночлены и многочлены. Стандартный вид одночлена, многочлена. Коэффициент одночлена. Степень одночлена, многочлена. Действия с одночленами и многочленами. Разложение многочлена на множители. Формулы
сокращенного умножения. Способы разложения многочлена на множители. Рациональные дроби и их свойства. Допустимые значения переменных. Тождество, тождественные преобразования рациональных дробей. Степень с целым показателем и их свойства. Корень n-ой степени, степень с рациональным показателем и их свойства.
4.Уравнения и неравенства
Линейные уравнения с одной переменной. Корень уравнения. Равносильные уравнения. Системы линейных уравнений. Методы решения систем уравнений: подстановки, метод сложения, графический метод.
Квадратные уравнения. Неполное квадратное уравнение. Теорема Виета о корнях уравнения. Неравенства с одной переменной. Система неравенств. Методы решения неравенств и систем неравенств: метод интервалов, графический метод.
5. Прогрессии: арифметическая и геометрическая
Числовые последовательности. Арифметическая прогрессия Разность арифметической прогрессии. Формула n-ого члена арифметической прогрессии. Формула суммы n-членов арифметической прогрессии. Геометрическая прогрессия. Знаменатель геометрической прогрессии. Формула n-ого члена геометрической прогрессии. Формула суммы n членов геометрической прогрессии. Сумма бесконечной геометрической прогрессии.
б. Функции и графики
Понятие функции. Функция и аргумент. Область определения функции. Область значений функции. График функции. Нули функции. Функция, возрастающая на отрезке. Функция, убывающая на отрезке. Линейная функция и
ее свойства. График линейной функции. Угловой коэффициент функции. Обратно пропорциональная функция и ее свойства. Квадратичная функция и ее свойства. График квадратичной функции. Степенная функция. Четная, нечетная функция. Свойства четной и нечетной степенных функций. Графики степенных функций. Чтение графиков функций.
7. Текстовые задачи
Текстовые задачи на движение и способы решения. Текстовые задачи на вычисление объема работы и способы их решений. Текстовые задачи на процентное содержание веществ в сплавах, смесях и растворах, способы решения.
8. Элементы статистики и теории вероятностей.
Среднее арифметическое, размах, мода. Медиана, как статистическая характеристика. Сбор и группировка статистических данных. Методы решения комбинаторных задач: перебор возможных вариантов, дерево вариантов, правило умножения. Перестановки, размещения, сочетания. Начальные сведения из теории вероятностей. Вероятность случайного события. Сложение и умножение вероятностей.
9. Треугольники.
Высота, медиана, средняя линия треугольника. Равнобедренный и равносторонний треугольники. Признаки равенства и подобия треугольников. Решение треугольников. Сумма углов треугольника. Свойства прямоугольных треугольников. Теорема Пифагора. Теорема синусов и косинусов. Неравенство треугольников. Площадь треугольника.
10. Многоугольники.
Виды многоугольников. Параллелограмм, его свойства и признаки. Площадь параллелограмма. Ромб, прямоугольник, квадрат. Трапеция. Средняя линия трапеции. Площадь трапеции. Правильные многоугольники.
11. Окружность.
Касательная к окружности и ее свойства. Центральный и вписанный углы. Окружность, описанная около треугольника. Окружность, вписанная в треугольник. Длина окружности. Площадь круга.
12. Решение тренировочных вариантов и заданий из открытого банка заданий ГИА-9
Экзаменационная работа по математике в новой форме (ОГЭ) состоит из двух частей. Первая часть предполагает проверку уровня обязательной подготовки обучающихся (владение понятиями, знание свойств и алгоритмов, решение стандартных задач). Вторая часть имеет вид традиционной контрольной работы и состоит из пяти заданий. Эта часть работы направлена на дифференцированную проверку повышенного уровня математической подготовки обучающихся: владение формально-оперативным аппаратом, интеграция знаний из различных тем школьного курса, исследовательские навыки.
ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ С УКАЗАНИЕМ ЧАСОВ, ОТВОДИМЯХ НА ОСВОЕНИЯ КАЖДОЙ ТЕМЫ
№ п/п
Тема
Кол-во часов
1-2
Числа, числовые выражения.
2
3-4
Десятичные дроби, действия с десятичными дробями. Проценты.
2
5-6
Обыкновенные дроби, действия с обыкновенными дробями
2
7-8
Буквенные выражения. Сравнение чисел.
2
9-10
Преобразование выражений. Степень с целым показателем и их свойства
2
11-12
Корень n-ой степени, степень с рациональным показателем и их свойства.
2
13-14
Рациональные дроби и их свойства. Допустимые значения переменных.
2
15-16
Линейные уравнения с одной переменной.
2
17-18
Треугольники. Виды и свойства треугольников. Площадь треугольника.