В 10 задании ОГЭ по математике необходимо решить простую задачу по геометрии. Для успешного решения необходимо обладать базовыми знаниями по геометрии вообще, так как сложно выделить какую-то одну тему, по которой даны задания. Это относится ко всему модулю геометрии. Я рекомендую повторить понятия центральные и вписанные углы, свойства касательных к окружности, взаимосвязь между радиусом описанной или вписанной окружности в геометрические фигуры - в первую очередь прямоугольный треугольник и квадрат.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
В окружности равные хорды равноудалены от центра окружности.
Отрезки пересекающихся хорд связаны равенством:
Центральный и вписанный углы:
Ниже я разобрал три различных примера 10 задания. Если у вас остались пожелания, или вы хотите разобрать задачу, которой здесь нет, напишите об этом в комментарии.
Разбор типовых вариантов заданий №10 ОГЭ по математике
Рассмотрим первый типовой вариант 10 задания:
Четырехугольник ABCD вписан в окружность. Угол ABC равен 92°, угол CAD равен 60°. Найдите угол ABD. Ответ дайте в градусах.
Внимательно посмотрим на рисунок. Угол ABC опирается на дугу ADC, а угол CAD - на дугу DC. Угол, который нам необходимо найти - ABD, опирается на дугу AD - которая является частью дуги ADC за вычетом дуги DC. Значит, угол ABD равен разности углов ABC и CAD:
∠ABD = 92 - 60 = 32
Ответ: 32°
Рассмотрим второй вариант 10 задания:
Касательные в точках A и B к окружности с центром O пересекаются под углом 2º. Найдите угол ABO. Ответ дайте в градусах.
Во-первых, касательные равны между собой по длине, а значит треугольник с основанием AB равнобедренный. Угол при вершине этого треугольника равен 2 градуса по условию, значит углы при основании равны:
(180 - 2) / 2 = 89°
Во-вторых, касательные перпендикулярны радиусу, то есть угол между ними и радиусом равен 90 градусов.
Заметим, что угол ABO, который необходимо найти, является частью угла между касательной и радиусом, а именно за вычетом угла, который мы нашли в первом пункте. Значит, этот угол равен:
90 - 89 = 1°
Ответ: 1
Разберем третий вариант 10 задания:
В треугольнике ABC известно, что AC = 16, BC = 12, угол C равен 90º. Найдите радиус описанной около этого треугольника окружности.
Для решения необходимо вспомнить, что центр описанной около прямоугольного треугольника окружности расположен в середине гипотенузы. То есть гипотенуза является диаметром, а её половина - радиусом.