Цели урока: 1) образовательная: обучающиеся должны усвоить: понятие о предельных углеводородах, их химическом, пространственном и электронном строении; на примере рассмотрения метана и его гомологов - электронную природу химических связей и пространственное строении молекул углеводородов; основные способы лабораторного и промышленного получения алканов; физические свойства предельных углеводородов.
2) развивающая: обучающиеся должны научиться: объяснять тетраэдричное строение молекулы метана, зигзагообразное строение цепи у предельных углеводородов; записывать молекулярные, структурные и электронные формулы предельных углеводородов, называть их по систематической номенклатуре и по названию составлять формулы;
3) воспитательная: обучающиеся должны убедиться: в мировоззренческих понятиях о познаваемости природы, причинно-следственной зависимости между составом, строением, свойствами и применением предельных углеводородов и др.; что природа химической связи одинакова как у веществ неорганических, так и органических, что является одним из доказательств единства этих веществ; в необходимости соблюдения правил пользования «бытовым» газом вследствие его взрывоопасности.
Основные понятия, изучаемые на уроке: предельные углеводороды, гомологи, гомологический ряд, гомологическая разность, общая формула, электронная формула, пространственное строение молекул веществ, тетраэдрическое строение молекул метана.
Планируемые результаты обучения: уметь на примере углеводородов ряда метана устанавливать, чем по составу молекул отличается каждый последующий углеводород от предыдущего; составлять структурные формулы первых 4-5 углеводородов этого ряда, приводить примеры изомеров этих веществ; определять молярную массу предельных углеводородов по их формулам, давать исторически сложившиеся названия; на конкретных примерах объяснять электронное и пространственное строение молекул предельных углеводородов и некоторых из их изомеров; составлять структурные и электронные формулы углеводородов по числу атомов углерода в молекуле и их моделям.
Метод: проблемная беседа с выдвижением гипотез; смоделировать проблемную ситуацию, чтобы затем выяснить причину закономерного изменения состава углеводородов на группу - СН2, кажущегося нарушения валентности углерода, многообразия органических соединений; при объяснении материала по ходу урока демонстрация лабораторных опытов, которые требуются по программе.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Конспект урока химии "Природный газ. Алканы."»
Урок № 7.
Тема урока: «Природный газ. Алканы».
Цели урока: 1) образовательная: обучающиесядолжны усвоить: понятие о предельных углеводородах, их химическом, пространственном и электронном строении; на примере рассмотрения метана и его гомологов - электронную природу химических связей и пространственное строении молекул углеводородов; основные способы лабораторного и промышленного получения алканов; физические свойства предельных углеводородов.
2) развивающая: обучающиесядолжны научиться: объяснять тетраэдричное строение молекулы метана, зигзагообразное строение цепи у предельных углеводородов; записывать молекулярные, структурные и электронные формулы предельных углеводородов, называть их по систематической номенклатуре и по названию составлять формулы;
3) воспитательная: обучающиесядолжны убедиться: в мировоззренческих понятиях о познаваемости природы, причинно-следственной зависимости между составом, строением, свойствами и применением предельных углеводородов и др.; что природа химической связи одинакова как у веществ неорганических, так и органических, что является одним из доказательств единства этих веществ; в необходимости соблюдения правил пользования «бытовым» газом вследствие его взрывоопасности.
Основные понятия, изучаемые на уроке: предельные углеводороды, гомологи, гомологический ряд, гомологическая разность, общая формула, электронная формула, пространственное строение молекул веществ, тетраэдрическое строение молекул метана.
Планируемые результаты обучения: уметь на примере углеводородов ряда метана устанавливать, чем по составу молекул отличается каждый последующий углеводород от предыдущего; составлять структурные формулы первых 4-5 углеводородов этого ряда, приводить примеры изомеров этих веществ; определять молярную массу предельных углеводородов по их формулам, давать исторически сложившиеся названия; на конкретных примерах объяснять электронное и пространственное строение молекул предельных углеводородов и некоторых из их изомеров; составлять структурные и электронные формулы углеводородов по числу атомов углерода в молекуле и их моделям.
Метод: проблемная беседа с выдвижением гипотез; смоделировать проблемную ситуацию, чтобы затем выяснить причину закономерного изменения состава углеводородов на группу СН2, кажущегося нарушения валентности углерода, многообразия органических соединений; при объяснении материала по ходу урока демонстрация лабораторных опытов, которые требуются по программе.
Оборудование и реактивы: на демонстрационном столе набор углеводородов: нефть, бензин (керосин), пропан-бутановая смесь (сжиженный газ в баллончике), машинное масло, вазелин, парафин (свеча), изделия из полиэтилена; демонстрационные схемы образования ковалентных и ионных связей, разъемная модель тетраэдра, масштабные и шаростержневые модели молекул метана и других углеводородов; газовая зажигалка с прозрачным резервуаром; кристаллические CH3COONa, NaOH, КМnО4, прибор для получения газов, пробирки; таблица: углеводороды ряда метана; на ученических столах: наборы для моделирования молекул; модели молекул Стюарта — Бриглеба.
Ход урока.
1. Организационный момент.
2. Изучение нового материала.
I. Понятие углеводородов.
Преподаватель предлагает ребятам «расшифровать» термин углеводород. Это не представляет никакого труда: углеводородами называются органические соединения, состоящие из атомов двух элементов — углерода и водорода. Это самые простые органические вещества, что отнюдь не умаляет их значения. Напротив, по определению немецкого химика Карла Шорлеммера, «органическая химия есть химия углеводородов и их производных».
Общую формулу углеводородов можно представить в виде СxНy , где х и у связаны между собой определенным соотношением, определяющим класс углеводорода. Единственный углеводород - метан -имеет в своем составе один атом углерода; в остальных углеводородах число х колеблется от двух до нескольких тысяч.
Общую классификацию органических веществ, рассмотренную в §5 учебника (см. рис. 1 данного пособия), можно распространить и на углеводороды. Преподаватель обращает внимание на то, что изучение углеводородов начинается с самого простого класса - ациклических предельных соединений, называемых алканами.
II. Электронное и пространственное строение молекулы метана.
Простейший углеводород - метан - известен людям очень давно. Его называли болотным или рудничным газом.
Атом углерода в метане находится в состоянии sp3-гибридизации. Обучающиеся вспоминают, что углерод в данном случае имеет четыре равноценные гибридные орбитали, оси которых направлены к вершинам правильного тетраэдра. Угол между осями этих орбиталей составляет 109°28'. Преподаватель изображает на доске строение атома углерода в sp3-гибридном состоянии.
Важно подчеркнуть, что электронное строение атома углерода определяет пространственное расположение атомов в молекуле метана. Все четыре ковалентные связи С—Н образованы за счет перекрывания sp3-орбиталей атома углерода и s-орбитали водорода. Все связи в молекуле метана относятся к σ-типу. Центры ядер атомов водорода лежат в вершинах правильного тетраэдра, валентный угол Н—С—Н составляет 109°28.
Для более конкретного восприятия пространственной структуры метана преподаватель демонстрирует объемную модель молекулы (шаростержневую или Стюатра — Бриглеба), дает ребятам домашнее задание собрать аналогичную модель из спичек и пластилиновых шариков.
III. Гомологический ряд предельных углеводородов.
Эту часть урока преподаватель начинает с упоминания об уникальном свойстве атома углерода образовывать за счет связи друг с другом длинные цепочки. Если все оставшиеся валентности углерода при этом будут заняты атомами водорода, это и будут углеводороды, которые принято называть предельными, парафиновыми, насыщенными или алканами. Преподаватель дает определение алканов и расшифровывает значение всех синонимов.
Слово «предельные» означает, что атомы углерода связаны с максимальным (предельным) числом атомов водорода. Насыщенный углеводород не имеет в своем составе двойных или тройных углерод-углеродных связей. Термин «парафины» происходит от латинского словосочетания parumaffinis, что означает не обладающий сродством.
Таким образом, предельные углеводороды составляют особую группу, класс органических соединений. При переходе к повторению понятия гомологического ряда, преподаватель проводит следующую аналогию. Любая область знания имеет раздел, называемый таксономией (дословно: располагать по порядку, по закону). Он занимается классификацией тех объектов, которые изучает данная наука. В биологии, например, типы животных делятся на классы, классы - на отряды, те - на семейства, которые подразделяются на рода, род делится на виды. В неорганической химии существует свое деление веществ на классы. Какие? Обучающиеся называют оксиды, основания, кислоты, соли. Внутри этих классов есть своя градация. В органической химии все вещества данного класса можно выстроить в ряд, называемый гомологическим. Пусть два атома углерода образовали друг с другом ковалентную неполярную связь. У каждого остается по три свободных валентности, неспаренных электрона. Если все эти валентные возможности насыщены атомами водорода, мы получим углеводород этан. Аналогично преподаватель строит молекулу пропана:
H H H H H
| | | | | | | | | |
– C – C – → H – C – C – H – C – C – C – → H – C – C – C – H
| | | | | | | | | |
H H H H H
этан пропан
Далее повторяются понятия «гомологический ряд», «гомологическая разность» и «гомологи».
Поскольку строение молекул подобно, похожи и их химические свойства. В чем различие в составе таких веществ? Из структурных формул хорошо видно, что они отличаются на группу – СН2 – , одну или несколько.
Гомологическим рядом называется совокупность органических соединений, обладающих подобным строением и свойствами и отличающихся друг от друга по составу на одну или несколько групп – СН2 – (гомологическая разность). Представители одного гомологического ряда называются гомологами.
С небольшой помощью учителя, «разделившего» молекулу пропана на фрагменты фигурными скобками, ребята выводят общую формулу алканов: СnН2n+2.
H H H
| | |
H – C – C – C – H
| | |
H H H
H + CnH2n + H
CnH2n + 2
Формулы этана и пропана, приведенные выше, называются полными структурными формулами. Чаще всего нет необходимости так подробно изображать структуру вещества. Вполне информативны сокращенные структурные формулы, в которых связи С— Н «свернуты», не показаны. Для упомянутых этана и пропана они выглядят привычно: СН3 — СН3 и СН3 — СН2 – СН3 или даже СН3СН3 и СН3СН2СН3. Важно подчеркнуть, что оба варианта равноценны. Ведь, как правило, преподаватель не придает особого значения тому или иному способу написания сокращенной структурной формулы, а ребята пытаются запомнить, нужен в формуле «штрих» или нет.
Еще один способ обозначения органических веществ - молекулярные формулы. Они показывают только состав молекулы, но не отражают порядок связей атомов. Этан имеет молекулярную формулу С2Н6, пропан — C3H8. Преподаватель проверяет, как ребята выполнили задание изготовить карточки с названиями и формулами первых 10 членов гомологического ряда алканов, просит приносить эти карточки на последующие уроки.
IV. Изомерия и номенклатура алканов.
Научить ребят составлять структурные формулы гомологов и изомеров - очень важная задача данного урока. К ее решению можно подойти таким способом. Преподаватель, пользуясь масштабными моделями молекул, предлагает вернуться к родоначальнику гомологического ряда алканов -метану. Все связи С—Н в молекуле равноценны. Если одну из этих связей разорвать таким образом, что каждый атом получит назад свой ранее обобществленный электрон, образуется две частицы: атом водорода и метальный радикал. Как называется такой разрыв связей в органической химии? Это гемолитический разрыв. Теперь соединим между собой два метальных радикала. Получим гомолог метана - этан. В этом углеводороде так же, как в метане, все атомы водорода эквивалентны. Заменой любого из них на метальный радикал получаем единственный третий гомолог состава С3Н8 - пропан. Атомы водорода в этом алкане уже не одинаковы: шесть из них расположены у крайних углеродных атомов, а два - у среднего. Если мы формально заменим любой из шести «крайних» атомов Н на радикал СН3—, получим бутан нормального строения - н-бутан. Если такой замене подвергнуть один из двух «центральных» атомов водорода - это уже другая молекула, другое вещество того же состава С4Н10 - изобутан. H H H H
| | | |
H – C – C – C – C – H
H H H H H H | | | |
| | | | | | a H H H H
H – C–– H → H – C – C ––H → H – C – C – C–– H a
| | | | | б | H H H
H H H H H H | | |
H – C – C – C – H
| |
H H
H – C – H
|
H б
Преподаватель спрашивает, как называются вещества, имеющие один и тот же состав, но различное химическое строение? Конечно же, это изомеры. И здесь еще раз закрепляются понятия о структурной изомерии.
Изомеры бутана имеют различный порядок связи атомов в молекуле. Это структурная изомерия.
Такой вид структурной изомерии, в котором представители одного гомологического ряда отличаются порядком связи атомов углерода в молекуле, называется изомерией углеродного скелета.
На примере изомеров пентана, построенных аналогично из н-бутана и изобутана, преподаватель закрепляет различие в понятиях «изомер» и «гомолог». Любой из двух бутанов по отношению к любому пентану - гомолог, но не изомер! Пентаны «доводятся» друг другу изомерами, но не являются гомологами.
Изомеры пентана Изомеры бутана
H H H H H H H H H H
| | | | | | | | | |
H – C – C – C – C – C – C – H H – C – C – C – C – H
| | | | | | | | | |
H H H H H H H H H H
гомологи
CH3 – CH – CH2 – CH3 CH3 – CH – CH3
| |
CH3 CH3
Гомологи
H
|
H – C – H
H H
| |
H – C – C – C – H
| |
H H
H – C – H
|
H
На данном этапе целесообразно ввести понятия первичного, вторичного, третичного и четвертичного атомов углерода на примере структур, изображенных на доске. Такая классификация проводится по числу соседних углеродных атомов, связанных с данным. Пентан нормального строения имеет два первичных и три вторичных атома углерода; изопентан - три первичных, один вторичный и один третичный атом; последний изомер - четыре первичных и один четвертичный атом углерода.
Для того чтобы обучающиеся при написании формул всех возможных изомеров указанного состава не изображали лишние структуры, а также избежали некоторых распространенных ошибок в номенклатуре алканов, полезно с применением модели молекулы (например, изопентана) пояснить следующее. Реальная молекула занимает в пространстве любое положение и форму, которую позволяет ей свободное вращение относительно связей С – С. Изобразить же ее структурную формулу на плоскости (на доске или в тетради) мы можем произвольным, удобным для нас способом. От этого изопентан не перестанет быть изопентаном, не превратится в другой изомер.
Для того чтобы была однозначность в присвоении каждому веществу своего собственного имени, и по названию можно было воспроизвести формулу вещества, напоминает преподаватель, химики пользуются особой системой названий — химической номенклатурой, и подчеркивает, что, как уже знают обучающиеся, наиболее универсальна и понятна на любом языке так называемая международная номенклатура (IUPAC). Обучающиеся называют первую из изображенных структур и убеждаются, что и все остальные имеют то же самое название — 2-метилбутан. Это одно и то же вещество! Верно и обратное: каждому названию может соответствовать единственное вещество.
Преподаватель подчеркивает, что составлять названия алканов и по названию изображать структурные формулы — увлекательное занятие. Особенно если обучающиеся работают рационально. Для этого необходимо строго придерживаться следующего алгоритма.
1. Выбрать в молекуле самую длинную цепочку углеродных атомов.
2. Пронумеровать цепочку с того конца, к которому ближе разветвление молекулы.
3. Основа названия — название углеводорода с тем же числом углеродных атомов, что и в самой длинной цепи (помогает карточка-подсказка) .
4. Перед основой названия перечислить все заместители основной цепи с указанием номеров углеродных атомов, при которых они стоят. Если одинаковых заместителей несколько, перед их названиями ставят приставки ди-, три-,тетра- и т. д.
5. Все цифры друг от друга отделяются запятыми, буквы от цифр — дефисом, название пишется в одно слово (без пробелов). Если при одном углеродном атоме имеется не один, а два заместителя, его цифра повторяется в названии дважды (например, 2,2-диметилбутан, а не 2-диметилбутан).
Перечисленные правила иллюстрируются следующими примерами:
Для особо интересующихся химией учащихся преподаватель напоминает, что часто при названии углеводородов и радикалов используют некоторые термины иной номенклатуры — рациональной. Полезно запомнить, что при наличии в алкане или алкильном заместителе фрагмента СН3—СН (СН3) — к его названию можно добавить префикс изо-, фрагмента СН3—С(СН3)2 — префикс нео-:
CH3
|
CH3 – CH – CH3 CH3 – C – CH2 – CH3
| |
CH3 CH3
изобутан неогексан
CH3 – CH – CH2 – CH3 – CH –
| |
СН3 CH3
изобутил изопропил
Обучающиеся должны уметь составлять структурные формулы всех изомерных углеводородов предложенного им состава. Это требует определенного навыка.
Изображать формулы возможных изомеров следует, начиная с единственного изомера нормального строения. Затем, укорачивая цепочку последовательно на один углеродный атом, изображать формулы изомеров с разветвленным углеродным скелетом. Если на первых парах возникают ошибки в определении числа атомов водорода, лучше сначала нарисовать «голый» углеродный скелет (пересчитайте атомы углерода!), а затем «навесить» на него водородные атомы, учитывая четырёхвалентность атома углерода.
Как не написать «лишние» формулы изомеров? Нужно сразу называть изображенный алкан: двух одинаковых названий быть не должно.
Структурную формулу по названию изображать еще проще. Начинать нужно с основы названия — цепочки «голых» углеродных атомов, которую нумеруют слева направо. Затем размещают радикалы и наконец добавляют в цепочку атомы водорода, учитывая четырехвалентность атома углерода.
V. Способы получения алканов.
Преподаватель, опираясь на знания учащихся из курса неорганической химии, напоминает, что способы получения алканов, как и любых других практически значимых веществ, можно разделить на промышленные и лабораторные (рис. 3).
Рис.3. Способы получения предельных углеводородов.
В промышленности, технике и быту индивидуальные (химически чистые) углеводороды используются нечасто. Вполне достаточно иметь смесь алканов, близких по молекулярной массе. Например, природный газ главным образом состоит из метана (88-95%), этана (3-8%), пропана (0,7-2%) и бутана (0,2-0,7%) с примесью неорганических газов. Для получения практически ценных веществ из нефти ее подвергают ректификации — разделению на фракции, что подробно описано в учебнике. Фракция — это смесь веществ, температуры кипения которых находятся в определенном заданном интервале.
Переходя к рассмотрению процессов промышленной переработки нефтепродуктов, преподаватель начинает с сообщения о том, что наиболее ценной фракцией прямой перегонки нефти является бензин. Однако выход этой фракции не превышает 17-20% от массы сырой нефти. Возникает проблема: как удовлетворить все возрастающие потребности общества в автомобильном и авиационном топливе? Решение было найдено в конце XIX в. русским инженером Владимиром Григорьевичем Шуховым. В 1891 г. он впервые осуществил промышленный крекинг керосиновой фракции нефти, что позволило увеличить выход бензина до 65-70% (в расчете на сырую нефть)! Только за разработку процесса термического крекинга нефтепродуктов благодарное человечество золотыми буквами вписало имя этого уникального человека в историю цивилизации. Однако немногие знают, что Шуховым в Саратове были созданы речные наливные баржи для перевозки нефти. Эти суда впервые в мире собирались из отдельных секций, что позволяло спускать их со стапелей в очень короткий срок. Для загрузки и разгрузки баржи В. Г. Шухов использовал не мускульную силу, как было до тех пор, а паровые насосы. На бакинских нефтяных промыслах Владимир Григорьевич изобрел первый трубопровод для перекачки нефти с подогревом, это позволило избежать кристаллизации парафина на стенках труб и образования парафиновых пробок.
Процесс изомеризации алканов нормального строения называется также риформингом. Он имеет очень большое значение для повышения качества бензиновой фракции, получаемой после первичной перегонки сырой нефти. Каталитическая изомеризация протекает по ионному механизму.
Преподаватель завершает рассмотрение промышленных способов получения алканов проблемной ситуацией. Добыча и потребление нефти уже давно превратились из чисто экономического вопроса в особую форму межгосударственных политических отношений. Казалось бы, нефтедобывающим странам экономически выгодно наращивание добычи и продажи нефти. Однако в этом случае цены на сырье упадут и вместо прибыли будут приносить убытки. Каждое государство имеет определенную квоту на объем продажи «черного золота», которая является предметом острейшей борьбы крупнейших нефтяных монополий и ведущих промышленно развитых стран.
Вместе с тем добыча и потребление нефти ежегодно увеличивается в среднем на 8%. По оценкам специалистов разведанных запасов хватит только на ближайшие 50-70 лет. Нельзя ли использовать современные растительные и животные остатки для производства если не нефти, то хотя бы газа (он называется биогазом)? Оказывается, это вполне возможно и уже в значительных масштабах используется во многих развивающихся странах (Индия, Китай). На заводах по производству биогаза в качестве сырья используются отходы животного и растительного происхождения, которые перегнивают в генераторах под действием анаэробных бактерий (рис. 4). Подобно природному газу, биогаз состоит главным образом из метана. Его можно использовать непосредственно для отопления жилищ, приготовления пищи или получения электроэнергии с помощью электрогенератора. Остатки растительных и животных отходов после получения биогаза могут использоваться в качестве высокоэффективных экологически чистых удобрений, т. к. содержат значительное количество
связанного азота.
Генератор
биогаза
Растительная
биомасса
или навоз
Электро-
генератор
Удобрения
Рис. 4. Получение и использование биогаза.
Из лабораторных способов получения алканов наиболее часто в задачах различного типа встречается синтез Вюрца и пиролиз солей карболовых кислот со щелочами.
Французский химик, член Парижской академии наук Шарль Адольф Вюрц в 1855 г. разработал универсальный способ синтеза предельных углеводородов нагреванием галогеналканов с металлами (натрием, цинковой пылью). Кстати, помимо приведенной реакции Ш. Вюрц внес огромный вклад в развитие органической химии, в его честь назван минерал вюрцит.
Для наглядности в уравнении реакции Вюрца преподаватель показывает, как под действием металла образуются радикалы, которые соединяются между собой в молекулу нового алкана. Этот процесс удобно изобразить и с помощью моделей молекул.
Сильным учащимся, очевидно, будет по силам решить проблемную ситуацию: «Какие вещества получатся, если в реакцию Вюрца ввести два различных галогеналкана?» Очевидно, возможны три различных комбинации двух галогеналканов, которые должны привести к синтезу трех конечных углеводородов:
Более сложна для учащихся обратная задача, например: какой галогеналкан следует взять в реакцию Вюрца, чтобы получить 2,3-диметилбутан? Решение лучше осуществлять от обратного:
Замечательная особенность реакции Вюрца — удвоение числа атомов углерода в продукте по сравнению с исходным веществом.
Особенность другого лабораторного способа получения алка-нов состоит в уменьшении числа углеродных атомов на единицу. Речь идет о пиролизе (нагревании вещества, приводящем к его разложению) солей карбоновых кислот со щелочью. Преподаватель демонстрирует эту реакцию, нагревая в пробирке с газоотводной трубкой смесь ацетата натрия с гидроксидом натрия. Обучающиеся констатируют, что метан нерастворим в воде (его можно собрать в пробирку методом вытеснения воды), не обесцвечивает раствор перманганата калия, горит бледно-голубым пламенем.
CH3 – COONa + Na – O – H CH4 + Na2CO3
Написав на доске левую половину уравнения, преподаватель предлагает ребятам определить, какое неорганическое вещество (обведенное в рамочку) выделяется в качестве побочного продукта (карбонат натрия). Можно вспомнить, что функциональная группа карбоновых кислот называется карбоксильной. В этой реакции производное карбоновой кислоты (соль) теряет карбоксильный фрагмент, поэтому реакция называется декарбоксилированием.
Примером специфического способа получения алканов является гидролиз карбида алюминия. Этимология слова гидролиз (от греческого слов hydor— вода и lysis— разложение, распад) позволяет определить такие реакции, как процесс разложения сложного соединения на два или более новых вещества под действием воды.
Al4C3 + 12H2O → 4Al (OH)3 + 3CH4 ↑
VI. Физические свойства алканов.
Преподаватель обращает внимание ребят на то, что в любом гомологическом ряду с увеличением числа атомов углерода в цепи (т. е. с увеличением относительной молекулярной массы) возрастают температуры плавления, кипения, плотность веществ. Это одно из подтверждений закона природы о переходе количества в качество. Таким образом, алканы могут существовать в трех различных агрегатных состояниях. Обучающиеся вспоминают типы агрегатных состояний, различия между ними с точки зрения межмолекулярного взаимодействия и степени упорядоченности молекул. Преподаватель на доске обобщает ответы, записывая схему (рис. 5).
Агрегатные состояния вещества
Газообразное Жидкое Твердое
Кристаллическое Аморфное
Рис. 5. Агрегатные состояния вещества.
Преподаватель демонстрирует образцы алканов. Газообразный углеводород увидеть непросто, но в газовой зажигалке под давлением пропан и бутан являются бесцветными жидкостями. При нажатии на клапан на волю с легким шипением вырываются бесцветные газообразные алканы, практически лишенные запаха. Если зажечь зажигалку, то алканы горят слегка окрашенным пламенем.
Жидкие предельные углеводороды (бензин) уже имеют запах. Преподаватель приливает несколько миллилитров бензина в пробирку с водой. Границу раздела видно плохо, обе жидкости бесцветны. При интенсивном встряхивании пробирки образуется мутная эмульсия, которая быстро расслаивается: предельные углеводороды нерастворимы в воде. Если бросить в пробирку кристаллик перманганата калия, водный слой окрасится. Окраска не исчезнет, поскольку алканы не реагируют с водным раствором КМnО4.
Вазелин — смесь жидких и твердых предельных углеводородов. Можно убедиться, что алканы с большой молекулярной массой жирные на ощупь. Парафин — смесь твердых углеводородов, имеет аморфное состояние. Преподаватель показывает, что кусочек парафина плавает на поверхности воды (его плотность меньше единицы) и легко плавится (при нагревании воды в пробирке кусочек парафина превратится в жидкость). Однако предельные углеводороды легко растворяются в неполярных органических растворителях, жидкие алканы смешиваются друг с другом.
Все газообразные и жидкие алканы образуют взрывоопасные смеси с воздухом, поэтому в быту с ними надо обращаться очень осторожно.
Для закрепления материала рекомендуется решить ряд задач на способы получения алканов, а также вспомнить задачи на нахождение формулы вещества по массовым долям элементов (алгоритм решения приведен в книге для учителя, 9 класс, глава «Органические вещества», а также ниже).
Алгоритм решения задач на вывод формулы вещества.
1. Обозначить формулу вещества с помощью индексов х, у, z и т. д. по числу элементов в молекуле.
2. Если в условии не дана массовая доля одного элемента, вычислить ее как разность 100% и массовых долей всех остальных элементов.
3. Найти отношение индексов х : у : z как отношение частных от деления массовой доли элемента на его относительную атомную массу. Привести частные от деления к отношению целых чисел. Определите простейшую формулу вещества.
4. В задачах на нахождение формул органических веществ часто требуется сравнить относительную молекулярную массу простейшей формулы с М r истинной, найденной по условию задачи (чаще всего плотности по воздуху или по водороду). Отношение этих масс дает число, на которое надо умножить индексы простейшей формулы.
Пример. Углеводород, плотность паров которого по водороду равна 15, содержит 80,0% углерода. Найдите его молекулярную формулу.
Сравним ее с относительной молекулярной массой простейшей формулы:
М r (СН3) = 12 + 3=15
М r (СxHy) 30
———— = —— = 2
М r (СН) 15
Выяснили, что число атомов обоих элементов в простейшей формуле надо увеличить в два раза. Истинная формула вещества С2Н6.
3.Закрепление пройденного материала.
Усвоение учащимися материала данного урока очень важно, поскольку это основа успешного постижения номенклатуры и изомерии остальных классов органических соединений. Необходимо отработать основные типы заданий в классе и дома, только после этого можно переходить к изучению дальнейшего материала.
Задание 1.
1-й уровень.
1. Какая из приведенных общих формул углеводородов соответствует алканам:
CnH2n-2; CnH2n; CnH2n+2; CnH2n-6 ?
2. Составьте структурные формулы предельных углеводородов по приведенным углеродным скелетам:
3. У каких алканов отсутствуют изомеры: метан, этан, пропан, бутан?
2-й уровень.
1. Составьте структурные формулы всех изомеров гексана и назовите их.
2. Составьте структурные формулы всех изомеров октана, имеющих один четвертичный атом углерода, и
назовите их.
3. Напишите структурные формулы всех изомеров алкана, плотность паров которого по воздуху 2,48.
Задание 3.
Составьте структурные формулы следующих алканов:
1-й уровень. 2-метилгексан; З-метил-3-этилпентан; 2,3,4 - триметилгексан.
2-й уровень. 2,2,3,4-тетраметилгептан; 2,3-диметил-З-изопропилгексан; 2-метил-3,3-диэтилоктан.
Задание 4.
1-й уровень.
Объемные доли компонентов природного газа одного из месторождений составляют: 92% метана, 5% этана, 2% пропана, 0,7% оксида углерода (IV) и 0, 3% азота. Определите объемы каждого углеводорода в 120 м3 природного газа.
2-й уровень.
Объемные доли алканов в природном газе равны: метан — 91%, этан — 6%, пропан — 2%, бутан — 1 %. Вычислите массовые доли газов и рассчитайте объем воздуха, который потребуется для сжигания 1 м3 природного газа такого состава (условия нормальные, объемная доля кислорода в воздухе 20%).
Задание 5.
1-й уровень.
1. Какие продукты получаются при крекинге предельного углеводорода состава С14Н30 (тетрадекан)?
2. Какие вещества получатся при нагревании с натрием следующих веществ: а) иодметан;
б) 1-бромпропан.
3. Напишите уравнение реакции изомеризации н-бутана.
4. Какие вещества получатся при нагревании пропионата натрия СН3—СН2—COONa с гидроксидом натрия? Напишите уравнение реакции.
2-й уровень.
1. Напишите уравнение крекинга следующих алканов: а) н-декан; б) 2,3-диметилбутан.
2. Напишите реакции Вюрца, с помощью которых можно получить следующие углеводороды:
а) н-гексан; б) 2,5-диметилгексан.
3. При изомеризации предельного углеводорода нормального строения образуется 2,2,4-триметилпентан.
Определите исходный углеводород.
4. Составьте уравнения реакций получения указанных углеводородов нагреванием соли
соответствующей кислоты со щелочью: а) пропан; б) 2-метилпропан.
Задание 6.
1-й уровень.
1. Вычислите массовые доли углерода в четырех первых представителях гомологического ряда алканов.
2. Определите формулу углеводорода, массовая доля углерода в котором 75%, а водорода — 25%.
2-й уровень.
1. Вычислите массовые доли водорода в четырех первых представителях гомологического ряда алканов.
Сделайте вывод о дальнейшем изменении массовой доли водорода следующих гомологов.
2. Массовая доля углерода в углеводороде составляет 82,76%. При нормальных условиях 10 л этого газа
имеют массу 25,88 г. Составьте структурные формулы изомеров углеводорода и назовите их по