kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Самолетостроение. Основные агрегаты самолета.

Нажмите, чтобы узнать подробности

Основные агрегаты самолета

Самолеты относятся к летательным аппаратам тяжелее воздуха, им характерен аэродинамический принцип полета. У самолетов подъемная сила создается за счет энергии воздушного потока, омывающего несущею поверхность, которая неподвижно закреплена относительно корпуса, а поступательное движение в заданном направлении обеспечивается тягой силовой установки (СУ) самолета.

Различные типы самолётов имеют одни и те же основные агрегаты (составные части): крыло, вертикальное (ВО) и горизонтальное (ГО) оперение, фюзеляж, силовую установку (СУ) и шасси (рис 2.1).

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Самолетостроение. Основные агрегаты самолета.»

Основные агрегаты самолета

Самолеты относятся к летательным аппаратам тяжелее воздуха, им характерен аэродинамический принцип полета. У самолетов подъемная сила создается за счет энергии воздушного потока, омывающего несущею поверхность, которая неподвижно закреплена относительно корпуса, а поступательное движение в заданном направлении обеспечивается тягой силовой установки (СУ) самолета.

Различные типы самолётов имеют одни и те же основные агрегаты (составные части): крыло, вертикальное (ВО) и горизонтальное (ГО) оперение, фюзеляж, силовую установку (СУ) и шасси (рис 2.1).

Рис. 2.1. Основные элементы конструкции самолета

Крыло самолета 1 создает подъемную силу и обеспечивает поперечную устойчивость самолету при его полете.

Часто крыло является силовой базой для размещения шасси, двигателей, а его внутренние объемы используют для размещения топлива, оборудования, различных узлов и агрегатов функциональных систем.

Для улучшения взлетно-посадочных характеристик (ВПХ) современных самолетов на крыле устанавливаются средства механизации по передней и задней кромкам. По передней кромке крыла размещают предкрылки, а по задней – закрылки 10, интерцепторы 12 и элероны-интерцепторы.

В силовом отношении крыло представляет собой балку сложной конструкции, опорами которой являются силовые шпангоуты фюзеляжа.

Элероны 11 являются органами поперечного управления. Они обеспечивают поперечную управляемость самолета.

В зависимости от схемы и скорости полета, геометрических параметров, конструкционных материалов и конструктивно-силовой схемы масса крыла может составлять до 9…14 % от взлетной массы самолета.

Фюзеляж 13 объединяет основные агрегаты самолета в единое целое, т.е. обеспечивает замыкание силовой схемы самолета.

Внутренний объем фюзеляжа служит для размеще­ния экипажа, пассажиров, грузов, оборудования, почты, багажа, средств спасения людей на случай возникновения аварийных ситуаций. В фюзеляжах грузовых самолетов предусмотрены развитые погрузочно-разгрузочные системы, устройства быстрой и надежной швартовки грузов.

Функцию фюзеляжа у гидросамолётов выполняет лодка, которая позволяет производить взлет и посадку на воду.

фюзеляж в силовом отношении является тонкостенной балкой, опорами которой являются лонжероны крыла, с которыми он связан через узлы силовых шпангоутов.

масса конструкции фюзеляжа составляет 9…15 % от взлетной массы самолета.

Вертикальное оперение 5 состоит из неподвижной части киля 4 и руля направления (РН) 7.

Киль 4 обеспечивает самолету путевую устойчивость в плоскости X0Z, а РН - путевую управляемость относительно оси 0y.

Триммер РН 6 обеспечивает снятие длительных нагрузок с педалей, например, при отказе двигателя.

Горизонтальное оперение 9 включает в себя неподвижную или ограниченно подвижную часть (стабилизатор 2) и подвижную часть – руль высоты(РВ) 3.

Стабилизатор 2придает самолету продольную устойчивость, а РВ 3 - продольную управляемость. РВ может нести на себе триммер 8 для разгрузки штурвальной колонки.

Масса, конструкции ГО и ВО обычно не превышает 1,3…3 % от взлетной массы самолета.

Шасси самолета 16 относится к взлетно-посадочным устройствам (ВПУ), которые обеспечивают разбег, взлет, посадку, пробег и маневрирование самолета при движении по земле.

Число опор и расположение их относительно центра масс (ЦМ) самолета за­висит от схем шасси и особенностей эксплуатации самолета.

Шасси самолета, показанного на рис.2.1, имеет две основные опоры16 и одну носовую опору 17. Каждая опора включает в себя силовую стойку18 и опорные элементы – колеса 15. Каждая опора может иметь несколько стоек и несколько колес.

Чаще всего шасси самолета делают убирающимися в полете, поэтому для его размещения предусматривают специальные отсеки в фюзеляже 13. Возможна уборка и размещение основных опор шасси в специальных гондолах (или мотогондолах), обтекателях14.

Шасси обеспечивает поглощение кинетической энергии удара при посадке и энергии торможения на пробеге, рулении и при маневрировании самолета по аэродрому.

самолеты-амфибии могут совершать взлет и посадку, как с наземных аэродромов, так и с водной поверхности.

Рис.2.2. Шасси самолета-амфибии.

на корпусе гидросамолета устанавливают колесное шасси, а под крылом размещают поплавки1,2 (рис.2.2).

Относительная масса шасси обычно составляет 4…6% от взлетной массы самолета.

Силовая установка 19 (см.рис.2.1), обеспечивает создание силы тяги самолета. Она состоит из двигателей, а также систем и устройств, обеспечивающих их работу в условиях летной и наземной эксплуатации самолета.

У поршневых двигателей сила тяги создается воздушным винтом, у турбовинтовых - воздушным винтом и частично реакцией газов, у реактивных - реакцией газов.

В СУ входят: узлы крепления двигателей, гондола, управление СУ, входные и выходные устройства двигателей, топливная и масляная системы, системы запуска двигателя, противопожарная и противообледенительная системы.

Относительная масса СУ в зависимости от типа двигателей и схемы размещения их на самолете может достигать 14…18 % от взлетной массы самолета.

2.2. Технико-экономические и летно-технические характеристики самолетов

Технико-экономическими характеристиками самолетов являются:

- относительная масса полезной нагрузки:

`mпн = mпн /m0

где mпн - масса полезной нагрузки;

m0 - взлетная масса самолета;

- относительная масса максимальной платной нагрузки:

`mкнmах = mкнmах m0

где mкнmах масса максимальной коммерческой нагрузки;

- максимальная часовая производительность:

Пч = mкнmахvрейс

где vрейс - рейсовая скорость самолета;

- расход топлива на единицу производительности qТ

К основным летно-техническим характеристикам самолетов отно­сят:

- максимальную крейсерскую скорость vкр.mах;

- крейсерскую экономическую скорость Vкp.эк;

- высоту крейсерского полета Нкp;

- дальность полета с максимальной платной нагрузкой L;

- среднее значение аэродинамического качества Кв полете;

- скороподъемность;

- грузоподъемность, которая определяется массой пассажиров, грузов, багажа, перевозимой на самолете при заданной полетной массе и запасе топлива;

- взлетно-посадочные характеристики (ВПХ) самолета.

Основными параметрами, характеризующими ВПХ, являются скорость захода на посадку - Vз.п; посадочная скорость - Vп; скорость отрыва при взлете - Vomp; длина разбега при взлете - lраз; длина пробега при посадке - lnp; максимальное значение коэффициента подъемной силы в посадочной конфигура­ции крыла - Су max п; максимальное значение коэффициента подъемной силы во взлетной конфигурации крыла Су max взл

Классификация самолетов

Классификацию самолетов проводят по многим критериям.

Одним из основных критериев классификации самолетов является критерий по назначению. этот критерий предопределяет летно-технические характеристики, геометрические параметры, компоновку и состав функциональных систем самолета.

По своему назначению самолеты подразделяют на гражданские и военные. Как первые, так и вторые самолеты классифицируют в зависимости от вида выполняемых задач.

Ниже рассмотрена классификация только гражданских самолетов.

Гражданские самолеты предназначены для перевозки пассажиров, почты, грузов, а также для решения разнообразных народнохозяйственных задач.

Самолеты подразделяют на пассажирские, грузовые, экспериментальные, учебно-тренировочные, а также на самолеты целевого народнохозяйственного назначения.

Пассажирские самолеты в зависимости от дальности полета и грузоподъемности подразделяют на:

дальние магистральные самолеты – дальность полета L 6000 км;

средние магистральные самолеты - 2500 L 

ближние магистральные самолеты - 1000L 

самолеты для местных воздушных линий (МВЛ) - L 

Дальние магистральные самолеты (рис. 2.3) с дальностью полета более 6000 км, обычно, оснащаются СУ из четырех ТРДД или винтовентиляторных двигателей, что позволяет повысить безопасность полета в случае отказа одного или двух двигателей.

Средние магистральные самолеты (рис. 2.4, рис. 2 .5) имеют СУ из двух-трех двигателей.

Ближнемагистральные самолеты (рис. 2.6) при дальности полета до 2500 км имеют СУ из двух-трех двигателей.

Самолеты местных воздушных авиалиний (МВЛ) эксплуатируются на авиационных трассах протяженностью менее 1000 км, а их СУ может состоять из двух, трех и даже четырех двигателей. Увеличение числа двигателей до четырех обусловлено стремлением обеспечить высокий уровень безопасности полетов при большой интенсивности взлетов-посадок, характерных для самолетов МВЛ.

К самолетам МВЛ можно отнести административные самолеты, которые рассчитаны на перевозку 4…12 пассажиров.

Грузовые самолеты обеспечивают перевозку грузов. Эти самолеты в зависимости от дальности полета и грузоподъемности могут подразделяться аналогично пассажирским. перевозка грузов может осуществляться как внутри грузовой кабины (рис.2.7), так и на внешней подвеске фюзеляжа (рис. 2.8).

Учебно-тренировочные самолеты обеспечивают подготовку и тренировку летного состава в учебных заведениях и центрах подготовки гражданской авиации (рис.2.9). Такие самолеты часто изготовляют двухместными (инструктор и стажер).

Экспериментальные самолеты создаются для решения конкретных научных проблем, проведения натурных исследований непосредственно в полете, когда необходима проверка выдвигаемых гипотез и конструктивных решений.

Самолеты народнохозяйственного назначения в зависимости от целевого использования разделяются на сельскохозяйственные, патрульные, наблюдения за нефте- и газопроводами, лесными массивами, прибрежной зоной, дорожным движением, санитарные, ледовой разведки, аэрофотосъемки и др.

Наряду со специально спроектированными для этих целей самолетами под целевые задачи могут переоборудоваться самолеты МВЛ малой грузоподъемности.

Рис. 2.7. Грузовой самолет

Рис. 2.8. Перевозка грузов на внешней подвеске

Рис. 2.9. Учебно-тренировочный самолет

Рис. 2.10. Самолет народнохозяйственного назначения

Аэродинамическую компоновку самолета характеризует число, внешняя форма несущих поверхностей и взаимное расположение крыла, оперения и фюзеляжа.

В основу классификации аэродинамических компоновок положено два признака:

- форма крыла;

- расположение оперения.

В соответствии с первым признаком выделяют шесть типов аэродинамических компоновок:

- с прямым и трапециевидным крылом;

- со стреловидным крылом;

- с треугольным крылом;

- с прямым крылом малого удлинения;

- с кольцевым крылом;

- с круглым крылом.

Для современных гражданских самолетов практически используют первые два и частично третий тип аэродинамических компоновок.

Согласно второму типу классификации выделяют следующие три варианта аэродинамических компоновок самолетов:

- нормальной (классической) схемы;

- схемы "утка";

- схема "бесхвостка".

Разновидностью схемы "бесхвостка" является схема "летающее крыло".

Самолеты нормальной схемы (см.рис.2.5, 2.6) имеют ГО, расположенное за крылом. Эта схема получила господствующее распространение на самолетах гражданской авиации.

Основные достоинства нормальной схемы:

- возможность эффективного использования механизации крыла;

- легкое обеспечение балансировки самолета с выпущенными закрылками;

- уменьшение длины носовой части фюзеляжа. Это улучшает обзор пилоту и уменьшает площадь ВО, так как укороченная носовая часть фюзеляжа вызывает появление меньшего дестабилизирующего путевого момента;

- возможность уменьшения площадей ВО и ГО, так как плечи ГО и ВО значительно больше, чем у других схем.

недостатки нормальной схемы:

- ГО создает отрицательную подъемную силу практически на всех режимах полета. Это приводит к уменьшению подъемной силы самолета. Особенно на переходных режимах полета при взлете и посадке;

- ГО находится в возмущенном воздушном потоке за крылом, что отрицательно сказывается на его работе.

Для выноса ГО из "аэродинамической тени" крыла или из "спутной струи" закрылков на переходных режимах полета его смещают относительно крыла по высоте (рис.2.11, а), выносят его на середину киля (рис.2.11; б) или на верх киля (рис.2.11, в).

Рис. 2.11 Схемы размещения горизонтального оперения

а. ВО., смещенное относительно крыла по высоте;

б. ВО расположено на середине киля (крестообразное оперение);

в. Т- образное оперение;

г. v - образное оперение.

В практике самолетостроения известны случаи использования на самолете комбинированного, так называемого v -образного оперения (рис. 2.12). функции ГО и ВО в этом случае выполняют две поверхности, разнесенные под углом относительно друг друга. Рули, размещенные на этих поверхностях, при синхрон­ном отклонении вверх и вниз работают как РВ, а при отклонении одного руля вверх, а другого вниз достигается управление самоле­том в путевом отношении.

Достаточно часто на самолетах может применяться двухкилевое и даже трехкилевое ВО.

При аэродинамической компоновке самолета по схеме "утка" на ГО разме­щают перед крылом на носовой части фюзеляжа (рис.2.13)

Достоинствами схемы "утка" являются:

- размещение ГО в невозмущенном воздушном потоке;

- возможность уменьшения размеров крыла, так как ГО становится несущим, т.е. участвует в создании подъемной силы самолета;

- достаточно легкое парирование возникающего пикирующего момента при отклонении механизации крыла отклонением ГО;

Рис. 2.13 Компоновка самолета по схеме "утка"

- увеличение плеча ГО на более 30 %, чем у нормальной схемы, что позволяет уменьшить площадь крыла;

- при достижении больших углов атаки срыв потока на ГО возникает раньше, чем на крыле, что практически устраняет опасность выхода самолета на закритические углы атаки и сваливание его в штопор.

У самолета, выполненного по схеме "утка", смещение положения фокуса назад при переходе от М 1 меньше, чем у самолетов нормальной схемы, поэтому увеличение степени продольной устойчивости наблюдается в меньшей мере.

Недостатками данной схемы являются:

- снижение несущей способности крыла на 10-15 % из-за скоса потока от ГО;

- сравнительно малое плечо ВО, приводящее к увеличению площади ВО, а иногда и к установке двух килей для увеличения путевой устойчивости. Это компенсирует дестабилизирующий момент, создаваемый удлиненной носовой частью фюзеляжа.

Схема "бесхвостка" характеризуется отсутствием ГО (см. рис. 1.13), при этом функции ГО перекладываются на крыло. Самолеты, выполненные по такой схеме, могут не иметь фюзеляжа, в этом случае их называют "летающим крылом". Для таких самолетов характерно минимальное лобовое сопротивление.

Схема "бесхвостка" имеет следующие достоинства:

- так как на таких самолетах используются треугольные крылья, то при больших размерах бортовой нервюры можно уменьшить относительную толщину профиля, обеспечив рациональное использование объема крыла для размещения топлива;

- отсутствие нагрузок ГО позволяет облегчить хвостовую часть фюзеляжа;

- уменьшается стоимость и масса планера, так как отсутствует ГО, по этой же причине уменьшается сопротивление трения самолета из-за уменьшения площади обтекаемой воздушным потоком поверхности;

- значительные геометрические размеры бортовой нервюры обеспечивают возможность создать эффект "воздушной подушки" на режиме посадки самолета;

- так как в схеме "бесхвостка" применяют крылья двойной стреловидности, то на взлетном режиме происходит существенней прирост коэффициента подъемной силы.

Среди недостатков этой схемы наиболее существенным являются:

- невозможность полного использования несущей способности крыла на посадке;

- снижение потолка самолета из-за уменьшения аэродинамического качества, что объясняется удержанием элевонов в верхнем отклоненном положении для достижения наибольшего угла атаки крыла;

- сложность, а иногда и невозможность балансировки самоле­та при выпущенных закрылках;

- сложность обеспечения путевой устойчивости самолета из-за малого плеча ВО, поэтому иногда устанавливают три киля (см. рис. 1.13).

В практике опытного авиастроения можно встретить варианты с комбинацией основных схем в одном самолете.

Возможен вариант, когда на самолете применяют два ГО - одно перед крылом и второе за ним. При реализации схемы "тандем", самолет имеет почти соизмеримые по площади крыло и ГО. Схему "тандем" можно рассматривать как промежуточную между нормальной схемой и схемой "утка", благодаря чему расширяется эксплуатационный диапазон центровок при сравнительно малых потерях аэродинамического качества на балансировку самолета.

Основными конструктивными признаками, по которым проводят классификацию самолетов, служат:

- число и расположение крыльев;

- тип фюзеляжа;

- тип двигателей, число и размещение их на самолете;

- схема шасси, характеризуемая количеством опор и их взаим­ным расположением относительно ЦМ самолета.

В зависимости от числа крыльев различают монопланы и бипланы.

Схема моноплана доминирует в самолетостро­ении, и большинство самолетов выполняется именно по этой схеме, что обусловлено меньшим лобовым сопротивлением моноплана и возможностью увеличения роста скоростей полета.

Самолеты схемы "биплан" (рис.2.16) отличаются высокой маневренностью, но они тихоходны, поэтому данную схему реализуют для самолетов специального назначения, например, для сельскохозяйственных.

Рис 2. 16 Самолет схемы "биплан"

По расположению крыла относительно фюзеляжа самолеты могут выполняться по схеме "низкоплан" (рис.2.17, а), "среднеплан" (рис. 2.17, б) и "высокоплан" (рис.2.17, в).

Рис.2.17. Различные схемы расположения крыла

Схема "низкоплан" наименее выгодна в аэродинамическом отношении, так как в зоне сопряжения крыла с фюзеляжем нарушается плавность обтекания и возникает дополнительное сопротивление из-за интерференции системы "крыло-фюзеляж". Дан­ный недостаток можно существенно уменьшить постановкой зализов, обеспечивая устранение диффузорного эффекта.

Размещение ГТД в корневой части крыла позволяет использовать эжекторный эффект от струи двигателя, который получил название активного зализа.

Низкоплан имеет более высокое расположение нижнего обвода фюзеляжа над поверх­ностью земли. Это связано с необходимостью исключения касания концом крыла поверхности ВПП при посадке с креном, а также с обеспечением безопасной работы СУ при размещении двигателей на крыле. В этом случае усложняется процесс выгрузки-погрузки грузов, багажа, а также посадку-высадку пассажиров. Этого недостатка можно избежать, если оснастить шасси самолета механизмом "приседания".

Схему "низкоплан" наиболее часто используют для пассажирских самолетов, так как она обеспечивает большую по сравнению с другими вариантами безопасность при аварийной посадке на грунт и воду. При аварийной посадке на грунт с убранным шасси крыло воспринимает энергию удара, защищая пассажирскую кабину. При посадке на воду самолет погружается в воду по крыло, которое сообщает фюзеляжу дополнительную плавучесть и упрощает организацию работ, связанных с эвакуацией пассажиров.

Важным достоинством схемы "низкоплан" является наименьшая масса конструкции, так как основные опоры шасси чаще всего связаны с крылом и их габариты и масса меньше, чем у высокоплана. В сравнении с высокопланом, имеющим шасси на фюзеляже, низкоплан имеет меньшую массу, так как не требуется утяжеления фюзеляжа, связанного с креплением к нему основных опор шасси.

Низкоплан с размещением основных опор на крыле сохраняет основное правило: опорой самолету служит несущая поверхность. Это правило выдер­живается на всех эксплуатационных режимах, как в полете, так и при взлете - посадке. Крыло в последнем случае опирается при пробеге и разбеге на шасси. Благодаря этому удается унифицировать силовую схему, определяющую пути передачи максимальных нагрузок, и снизить массу конструкции самолета в целом. Рассмотренные достоинства стали причиной господствующего положения схемы "низко­план" на пассажирских самолетах.

Схема "среднеплан" (рис. 2. 17, б) для пассажирских и грузовых самолетов чаще всего не применяется, так как кессон крыла (его силовая часть) не может быть размещен в пассажирской или грузовой кабине.

С ростом взлетных масс и параметров самолетов появляется возможность приблизить компоновку крыла широкофюзеляжных самолетов к среднеплану. Крыло в этом случае поднимают до уровня пола пассажирского салона или грузовой кабины, как эти сделано на самолетах А-300, «Боинг-747», Ил-96 и др. Благодаря такому решению удается значительно улучшить аэродинамические характеристики.

В чистом виде схема "среднеплан" может быть реализована на двухпалубных самолетах, где крыло практически не мешает использованию объемов фюзеляжа для размещения пассажирских салонов, грузовых помещений и оборудования.

Схема "высокоплан" (рис.2.17, в) широко используется для грузовых самолетов, а также находит применение на самолетах МВЛ. В этом случае удается получить наименьшее расстояние от нижнего обвода фюзеляжа до поверхности ВПП, так как высоко расположенное крыло не влияет на выбор высоты фюзеляжа относительно земли.

При использовании схемы "высокоплан" появляется возможность свободного маневрирования спецавтотранспорта при техническом обслуживании самолета.

Транспортная эффективность грузовых самолетов повышается из-за самого низкого положения пола грузовой кабины, позволяющего обеспечить быстроту и легкость погрузки-выгрузки крупногабаритных грузов, самоходной техники, различных модулей и др.

Ресурс двигателей увеличивается, так как они находятся на значительном удалении от земли и вероятность попадания твердых частиц с поверхности ВПП в воздухозаборники резко уменьшается.

Отмеченные достоинства высокоплана объясняют то господствующее положение, которое заняла данная схема на самолетах транспортной авиации в отечественной (Ан-22, Ан-124, Ан-225), зарубежной (C-141, С-5А, С-17 (США) и др.) практике.

Схема "высокоплан" легко обеспечивает получение нормируемого безопасного расстояния от поверхности ВПП до конца лопасти воздушного винта или нижнего обвода воздухозаборника ГТД. Этим объясняется достаточно частое использование этой схемы на пассажирских самолетах МВЛ (Ан-28 (Украина), F-27 (Голландия), Шорт-360 (Англия), АТР 42, АТР-72 (Франция-Италия)).

Несомненным достоинством схемы "высокоплан" является более высокое значение Су max благодаря сохранению над фюзеляжем полностью или частично аэродинамически чистой верхней поверхности крыла, большей эффективности механизации крыла за счет снижения концевого эффекта на закрылках, так как борт фюзеляжа и мотогондола играют роль концевых "шайб".

Однако большая масса конструкции планера по сравнению с другими схемами отрицательно сказывается или на полезной нагрузке, или на запасе топлива и дальности полета. Утяжеление конструкции планера объясняется:

- необходимостью увеличения площади ВО на 15-20 % из-за попадания части ее в зону затенения от крыла;

- возрастанием массы фюзеляжа на 15-20% вследствие увеличения числа усиленных шпангоутов в зоне крепления основных опор шасси, усиления конструкции зоны нижнего обвода фюзеляжа на случай аварийной посадки с невыпущенным шасси и за счет упрочнений гермокабины.

При креплении основных опор шасси к силовой базе фюзеляжа возникают сложности с обеспечением требуемой колеи.

Малая колея шасси увеличивает нагрузку на одну бетонную плиту, что может потребовать для эксплуатации самолета более высокий класс аэродрома.

Стремление обеспечить приемлемую колею часто заставляет увеличивать габаритную ширину усиленных шпангоутов в зоне размещения основных опор, формировать выступающие гондолы шасси и увеличивать мидель самолета, а значит, и его аэродинамическое сопротивление. Как показывает статистика, в этом случае лобовое сопротивление гондол шасси может достигать 10-15 % от общего сопротивления фюзеляжа.

Меньшая безопасность высокоплана при аварийной посадке на воду и сушу делает иногда невозможным использование этой схемы на самолетах большой пассажировместимости, так как при аварийной посадке на грунт крыло своей массой вместе с двигателями стремится раздавить фюзеляж и пассажирскую кабину. При посадке на воду наблюдается погружение фюзеляжа до нижних обводов крыла и пассажирский салон может оказаться под водой. В этом случае организация работ по спасению пассажиров значительно осложняется и эвакуация людей возможна лишь через аварийные люки в верхней части фюзеляжа.

По типу фюзеляжа самолеты подразделяются на обычные, т.е. выполненные по однофюзеляжной схеме (рис.2.18, а); по двухфюзеляжной схеме и схеме "гондола" (рис.2.18, б).

Рис. 2.18 Классификация самолетов по типу фюзеляжа

Наибольшее распространение получила однофюзеляжная схема, позволяющая получить наиболее выгодную конфигурацию формы фюзеляжа с аэродинамической точки зрения, так как лобовое сопротивление в этом случае будет наименьшим по сравнению с другими типами.

При размещении оперения самолета не на фюзеляже, а на двух балках (рис.2.18, б) или замене фюзеляжа гондолой происходит увеличение лобового сопротивления. Для схемы "гондола" (рис. 2.18, б) характерна плохая обтекаемость гондол, что может привести к неустойчивости самолета на больших углах атаки. Поэтому двухбалочная схема "гондола" в практике самолетостроения реализуется редко, в основном, на транспортных самолетах, где вопросы транспортной эф­фективности становятся первостепенными. Примером такого решения может служить грузовой самолет "Аргоси" фирмы "Хоукер Сидли".

Рис.2.19 Самолет "Эджи Эркрафт"

По типу двигателей различают самолеты с ПД, ТРД, ТВлД и др.

По числу двигателей самолеты подразделяют на одно-, двух-, трех-, четырех-, шестидвигательные.

На пассажирских самолетах из условия обеспечения безопасности полетов число двигателей не должно быть менее двух. Увеличение числа двигателей свыше шести оказывается неоправданным из-за сложностей, связанных с обеспечением синхронизации работы отдельных СУ и увеличением времени и трудоемкости работ при техническом обслуживании.

По расположению двигателей дозвуковые пассажирские самолеты могут классифицироваться на четыре основные группы: двигатели - на крыле (рис. 2.20, а), двигатели - в корневой части крыла, двигатели - на хвостовой части фюзеляжа (б) и смешанный вариант (в) компоновки двигателей.

При выборе места установки двигателей учитывают особенности общей компоновки самолета, условия эксплуата­ции и обеспечения максимального ресурса двигателей, стремятся получить наименьшее лобовое сопротивление СУ, свести к минимуму потери воздуха в воздухозаборниках.

Так, на самолетах с тремя двигателями целесообразно применять смешанный вариант компоновки (рис.2.20): два двигателя под крылом и третий - в хвостовой части фюзеляжа или на киле.

Рис. 2.20 Схемы установки двигателей на самолетах

На самолетах с двумя двигателями СУ размещают на крыле или на хвостовой части фюзеляжа.

С увеличением степени двухконтурности двигателя его диаметр увеличивается. Поэтому при компоновке двигателей под крылом необхо­димо увеличивать высотушасси для обеспечения, нормируемого расстояния от обвода мотогондолы до поверхности земли. Это приводит к увеличению массы конструкции самолета и порождает ряд проблем, связанных с пассажирами, багажом и техническим обслуживанием. Прежде всего, это касается самолетов МВЛ, которые часто эксплуатируются с аэродромов, не имеющих специального оборудования. В то же время эффект разгрузки крыла в полете из-за размещения на нем двигателей значительно снижается, так как с увеличением степени двухконтурности удельная масса ТРД уменьшается.

Н а рис.2.21 показаны два самолета, конструкция которых создавалась исходя из одинаковых требований к платной нагрузке, дальности, ВПХ, миделю фюзеляжа и др. На рис.2.21 видно различие между двумя самолетами по высоте расположения относительно земли крыла и фюзеляжа. Рис.2.21 Влияние двухконтурности двигателей на компоновку самолета.


По типу опор шасси их подразделяют на колесное, лыжное, поплавковое (для гидросамолетов), гусеничное и шасси на воздушной подушке.

Преимущественное распространение получило колесное шасси, и довольно часто применяют поплавковое.

По схеме шасси самолеты подразделяются на трехопорные и двухопорные.

Трехопорная схема выполняется в двух вариантах: трехопорная схема с носовой опорой и трехопорная схема с хвостовой опорой. В большинстве случаев на самолетах применяется трехопорная схема с носовой опорой. Второй вариант этой схемы встречается на легких самолетах.

Двухопорная схема шасси на гражданских самолетах практически не используется.

На тяжелых, особенно транспортных, самолетах получило расп­ространение многоопорная схема шасси. Например, на самолете "Боинг-747" используется пятистоечное шасси, на самолете Ан-225 – шестнадцатистоечное, а на пассажирском Ил-86 – четырехстоечное.




Получите в подарок сайт учителя

Предмет: Прочее

Категория: Прочее

Целевая аудитория: 4 класс.
Урок соответствует ФГОС

Скачать
Самолетостроение. Основные агрегаты самолета.

Автор: Кабаргина Анна Алексеевна

Дата: 10.12.2019

Номер свидетельства: 531286


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства