kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Доли.Получение и образование долей.

Нажмите, чтобы узнать подробности

 Урок математикм  по программе Л.Г.Петерсон с использованием технологии деятельностного метода.

Цели урока:

Предметные:

- Дети поймут смысл понятия «доля», научатся читать и записывать доли.

- Дети научатся сравнивать доли одного и того же предмета на наглядной основе.

- Дети научатся использовать полученные знания для решения геометрических задач.

В процессе урока будут сформированы УУД:

Личностные:

-  развитие познавательной мотивации посредством выполнения различного вида учебных заданий.

Познавательные:

 - развитие психических процессов: произвольного внимания, логического мышления, памяти при:

  • составлении алгоритмов действий,
  • использовании геометрических фигур для создания наглядного образа,
  • решении логических задач,
  • выполнении учебных заданий с элементами занимательности и самоконтроля,
  • выполнении творческих упражнений.

Регулятивные:

- принятие и сохранение учебной задачи, самостоятельное адекватное оценивание правильности выполненных действий, проверка работы по эталону.

 Коммуникативные:

- развитие коммуникативно-речевых умений, умения работать в паре, в группе, индивидуально.

- развитие аккуратности, дисциплины, ответственности за свой труд и общее дело.

Метапредметные:

-развитие умения сравнивать, обобщать, делать выводы; работать по самостоятельно построенному алгоритму.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Доли.Получение и образование долей. »

Ф.И.О. педагога: Сушко Ольга Александровна

Номинация: предметный урок в начальной школе.

Предмет: Математика. Автор программы: Л.Г. Петерсон.

Класс: 4.

Тема: Доли. Получение и образование долей.

Тип урока: Открытие нового знания.

Цели урока:

Предметные:

- Дети поймут смысл понятия «доля», научатся читать и записывать доли.

- Дети научатся сравнивать доли одного и того же предмета на наглядной основе.

- Дети научатся использовать полученные знания для решения геометрических задач.

В процессе урока будут сформированы УУД:

Личностные:

- развитие познавательной мотивации посредством выполнения различного вида учебных заданий.

Познавательные:

- развитие психических процессов: произвольного внимания, логического мышления, памяти при:

  • составлении алгоритмов действий,

  • использовании геометрических фигур для создания наглядного образа,

  • решении логических задач,

  • выполнении учебных заданий с элементами занимательности и самоконтроля,

  • выполнении творческих упражнений.

Регулятивные:

- принятие и сохранение учебной задачи, самостоятельное адекватное оценивание правильности выполненных действий, проверка работы по эталону.

Коммуникативные:

- развитие коммуникативно-речевых умений, умения работать в паре, в группе, индивидуально.

- развитие аккуратности, дисциплины, ответственности за свой труд и общее дело.

Метапредметные:

-развитие умения сравнивать, обобщать, делать выводы; работать по самостоятельно построенному алгоритму.


Описание исходного уровня знаний, умений и навыков учащихся для постановки целей, усвоения учащимися новой темы.

  1. Владеют теоретическими знаниями из истории возникновения дробей, представлением о дроби как о числе, выражающем часть единиц счета или измерения.

  2. Умеют решать задачи на дроби, не записывая дроби, но используя схемы.

  3. Владеют мыслительными операциями: анализ, синтез, обобщение.

  4. Владеют навыками построения алгоритма.

  5. Владеют навыками самостоятельной работы и способами самоконтроля и самооценки.

  6. Владеют коммуникативными навыками для работы в парах, в группе.

  7. Владеют правильной математической речью.

Умеют организовывать рефлексивный анализ учебной деятельности с точки зрения выполнения требований известных учащимся.

Оборудование:

Для учителя:

  1. Мультимедийный проектор, компьютер, доска Smart.

2. Презентация к уроку 21, выполненная в программе Power Point с практическими заданиями и эталонами для самопроверки.Слайды:1-27.

Для детей:

1. Р-1.Индивидуальные планшеты.

2.Учебник Математика «Учусь учиться» 4класс,2 часть. Автор Л.Г. Петерсон.

3. Д-1.Авторское демонстрационное пособие – набор «Части целого на круге» для индивидуальной работы и работы в паре.

4. Д-2.Алгоритм нахождения доли (единицы измерения, предмета, любого объекта).

    1. 1 разделить на n равных частей;

    2. взять одну такую часть;

    3. записать результат.

5.Р-2. Карточка №1. В тетради постройте отрезок АВ длиной 6 см. Начертите третью долю отрезка АВ. Начертите четвертую долю отрезка АВ.

Р-3. Карточка №2.

На рисунке квадрат разделен на 8 равных частей.

1) заштрихуйте 4/8;




2) используйте другой способ деления квадрата на 8 равных частей, так, чтобы при этом не нужно было проводить диагонали и заштрихуйте 4/8.

Ход урока:

  1. Мотивация к учебной деятельности.

- Назовите тему предыдущего урока? (Дроби.)

- Что нового вы узнали? (Историю возникновения дробей. Способы решения задач на дроби, не записывая дроби, но используя схемы.)

- Что вы узнали о дробях? (Они выражают какую-то часть от целого.)

- Вы бы хотели продолжить работу с дробями? (Да.)

-Какая пословица поможет вам открыть новые знания? (Путь к уменью – ученье.)

  1. Актуализация знаний и фиксация индивидуального затруднения в пробном действии.

Слайд 1.

- Подумайте, что может выражать данное действие? (Деление!)

Слайд 2.

- Что может обозначать число 1? (Один предмет, единицу измерения.)

Слайд 3.

- Можем ли мы одно яблоко разделить на две части? (Легко!)

- Как это сделать? (Разрезать пополам.)

Слайд 4.

- Что означает число 1? (Было одно яблоко.)

Слайд 5, анимация 1.

- Что означает число 2? (Две половинки. Две части. Две доли.)

Слайд 6.

-Значит, что обозначает выражение 1:2? (Одно целое яблоко поделили на две части, доли, т.е. пополам.)

Слайд 7.

- Это какая часть яблока? (Вторая.)

Слайд 8.

- Сколько половинок или вторых частей в целом яблоке? (Две половинки, две части.)

-Составьте алгоритм наших действий. Запишите шаги алгоритма на планшетах. Работа в группах.

В ходе проверки учитель фиксирует на доске шаги полученного алгоритма.

Алгоритм №1:(Д-1)

1) предмет разделить на две равные части;

2) взять одну такую часть;

3) записать результат.

  1. Выявление причины затруднения.

- Как же записать нам эту половинку, часть? (Я пока затрудняюсь ответить на этот вопрос.)

- В чем причина затруднения? (Я не знаю, как записать данное выражение в виде дроби).

Дети предлагают свои решения для записи дроби. В случае если кто-то из учеников предложил правильную запись дроби, затруднение заключается в невозможности обосновать: что обозначает «число над чертой», «число под чертой».

4. Построение проекта выхода из затруднения.

Слайд 9, анимация 1 – 3.

- ½ - это дробь!

Слайд 10, анимация 1 – 2.

- Что обозначает число под чертой? (На сколько частей разделили.)

- Число под чертой называют в математике знаменателем дроби.

Слайд 11, анимация 1 – 2.

- Что обозначает число над чертой? (Сколько частей взяли.)

- Число над чертой называют числителем дроби.

Слайд 12, анимация 1 – 3.

- Чем является половина по отношению к целому яблоку? (Его частью.)

- Что больше: целое или его часть? (Целое!)

- Одна из равных частей целого в математике называется долей.

Слайд 13.

- Кто догадался, какая тема урока? (Доли.)

Слайд 14.

- Какая цель урока? Чему будем учиться? (Получать доли и их обозначать.)

- Правильно. А еще мы будем учиться сравнивать доли одного и того же предмета и записывать их дробями.

5. Реализация построенного проекта.

А теперь на основании выполненных действий алгоритма №1 составьте алгоритм нахождения части круга. Откройте коробочку с долями круга. Возьмите круг, разделенный на 4 части, покажите ¼ часть круга. Зафиксируйте шаги алгоритма на планшетах.

Учащиеся работают в группах.

  1. Круг разделили на 4 равные части.

  2. Взяли одну такую часть.

  3. Для обозначения данной доли используем запись: ¼.

Читается: «одна четвертая».

(Разделили на четыре равные части и взяли одну такую часть).

Слайд 15, анимация 1.

- Что обозначает каждая цифра в записи числа:

числитель?

знаменатель?

Учитель в ходе обсуждения последовательно фиксирует на доске шаги составленного алгоритма.

Алгоритм № 2(Д-2):

    1. предмет разделили на 4 равные части;

    2. взяли одну такую часть;

    3. записали результат.

- Что общего и чем различаются оба построенных алгоритма?

(Они различаются только первым шагом – тем, что делили).

- Что же объединяет яблоко, круг, которые разделили на части? (Это объекты деления, целое, единицы, которые делим на части).

-Вы делили один круг, одно яблоко. Сколько объектов деления вы используете каждый раз при делении? (Один.)

- Объект деления обозначается единицей (числитель дроби).

- На сколько частей можно разбить единицу? (На любое количество частей.)

- Как записать в общем виде «любое количество частей»?

Дети предлагают различные варианты буквенных обозначений числа.

- Количество целых частей может быть разным, поэтому обозначим его, как принято в математике буквой n.

- Давайте уточним наш алгоритм нахождения доли. Какие изменения надо внести?

Учащиеся проговаривают алгоритм.

Алгоритм №3(Д-3):

    1. разделить на n равных частей;

2) взять одну такую часть;

3) записать результат.

Слайд 16, анимация 1 – 3.

- Как в общем виде написать любую долю? (1/n)

- Что обозначает знаменатель в записи числа? (Разделили на n равных частей.)

- Что обозначает числитель? (Взяли одну такую часть.)

- Что обозначает в записи алгоритма слово «единица»? (Целое – предмет.)

- Как читают такую запись? (Одна n-ая).

- К чему вы можете обратиться для уточнения своих предположений? (К тексту учебника.)

- Откройте учебник на стр. 65 и прочитайте текст, выделенный в рамке, начиная со второго абзаца.

Дети работают с текстом учебника.

- Ваши предположения верны? (Да).

  1. Первичное закрепление во внешней речи.

- Что необходимо теперь сделать? (Потренироваться в применении новых знаний.)

Работа с карточками.

Карточка №1. (Р-2). В тетради постройте отрезок АВ длиной 6 см. Начертите третью долю отрезка АВ. Начертите четвертую долю отрезка АВ.

Работа в парах.

Рассуждают по алгоритму:

  1. отрезок разделили на 6 равных частей;

  2. взяли 2 таких части (2 см);

  3. записали долю 1/3.

Рассуждают по алгоритму:

  1. отрезок разделили на 12 равных частей (1 клеточка);

  2. взяли 3 таких части (1 см 5 мм);

  3. записали долю 1/4.

(Ученики комментируют решения.)

Слайд 17, анимация 1 – 2.

- Проверяем результаты выполнения по эталону.

- Продолжаем работу в парах.

Слайд 18, анимация 1.

- Откройте коробочку с долями круга. (Д-4). Покажите 1/6 круга.

(Показывают доли целого.)

Слайд 19, анимация 1 – 2.

- Выложите круг, разделенный на 4 части. Как называется каждая доля круга?

(¼ его часть.)

- Покажите 4/4 круга. Как записать это дробью? ( 4/4=1.) Покажите ¾ круга.

- Сравните ¼ и ¾.(¾ больше ¼: ¾ ¼)

Физкультурная пауза. Слайд 20, анимация 1 – 3.

- Солнышко выглянуло: встали! Потянулись. Поприветствуем солнышко. Оно радо умным и старательным людям. Солнышко вам улыбнется, если вы улыбнетесь друг другу.

- Какая часть солнышка желтого цвета? (3/7)

- Какая часть солнышка красного цвета? (2/7)

- Какая часть солнышка вишневого цвета? (2/7)

- Молодцы! Садитесь, пожалуйста.

7. Самостоятельная работа с самопроверкой по эталону.

Карточка №2. (Р-3).Слайд 21. Слайд 22 (Эталон для проверки).

  1. Квадрат разделен на 8 равных частей. Заштрихуйте 4/8.

(в карточке 10

квадратов)


Слайд 23.

2) Придумайте другой способ деления квадрата на 8 равных частей, так, чтобы при этом не нужно было проводить диагонали и заштрихуйте 4/8.

- Работаем в парах.

Слайд 24.

- Проверяем работу. Поднимите руку, у кого все верно.

(Дети сверяют правильность своей работы по эталону, если находят ошибки, пытаются их объяснить и исключить).

- Кто допустил ошибки? В чем причина?

Слайд 25, анимация 1. Задание на смекалку.

- Закрасили одну грань куба.

Какую долю поверхности куба закрасили? Докажите.

(1/6. Куб -это целое. У куба 6 граней. Закрашена только одна грань, значит – 1/6).

8. Включение в систему знаний.

Слайд 26. Творческое задание.

Возьмем круг, разделенный на 12 частей. Составим композицию из 12 долек. Тема: «Животные». Работа в парах.

По ходу работы можно задавать парам индивидуальные вопросы:

- Какую часть от всей фигуры составляют ушки зайца, лапки ежика и т.д.?

  1. Рефлексия деятельности на уроке.

- Какая была цель урока? (Научиться записывать доли, сравнивать доли одного и того же предмета.)

Слайд 27.

- Как получаются доли?

- Как записываются доли?

- Что показывает знаменатель дроби? Числитель?

-Чему научились? (Делить предмет на доли, сравнивать доли одного и того же предмета, записывать их дробями).

- Какое задание для вас было самым интересным?

- Какое задание вызвало наибольшее затруднение?

- Над чем еще надо поработать?

-Путь к уменью-ученье. Спасибо за работу!

Задание на дом. Стр. 67 №9, 10, 12(а).Дополнительно (по желанию) - стр. 66 №8, стр. 67 №13.

5




Получите в подарок сайт учителя

Предмет: Начальные классы

Категория: Уроки

Целевая аудитория: 4 класс.
Урок соответствует ФГОС

Скачать
Доли.Получение и образование долей.

Автор: Сушко Ольга Александровна

Дата: 24.03.2015

Номер свидетельства: 190821


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства