План-конспект урока по математике (4 класс)по теме: "НАХОЖДЕНИЕ НЕИЗВЕСТНОГО СЛАГАЕМОГО".
План-конспект урока по математике (4 класс)по теме: "НАХОЖДЕНИЕ НЕИЗВЕСТНОГО СЛАГАЕМОГО".
Урок 39 16.11.16г.
Нахождение неизвестного слагаемого
Цели: познакомить учащихся с решением уравнения на основе знания связи суммы и слагаемых; познакомить с проверкой решения уравнения; закрепить умения складывать и вычитать многозначные числа, находить площади многоугольников.
Ход урока
I. Организационный момент.
II. Устный счет.
1. Задание 313 на с. 64.
Учащиеся читают условие задачи, а потом объясняют, что обозначает каждое выражение, написанное ниже.
2. Нахождение площади фигур (задание 314 на с. 64).
Учащиеся находят площади фигур, изображенных на полях учебника, подсчитав полные клетки и их половины.
3. Задание 316 на с. 64 (можно вынести на доску).
Поставьте, если нужно, скобки, чтобы равенства стали верными:
1 000 – 990 : 10 + 1 = 902 960 : 2 + 6 = 120
III. Работа над новым материалом.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«План-конспект урока по математике (4 класс)по теме: "НАХОЖДЕНИЕ НЕИЗВЕСТНОГО СЛАГАЕМОГО".»
Урок 39 16.11.16г.
Нахождение неизвестного слагаемого
Цели: познакомить учащихся с решением уравнения на основе знания связи суммы и слагаемых; познакомить с проверкой решения уравнения; закрепить умения складывать и вычитать многозначные числа, находить площади многоугольников.
Ход урока
I. Организационный момент.
II. Устный счет.
1. Задание 313 на с. 64.
Учащиеся читают условие задачи, а потом объясняют, что обозначает каждое выражение, написанное ниже.
2. Нахождение площади фигур (задание 314 на с. 64).
Учащиеся находят площади фигур, изображенных на полях учебника, подсчитав полные клетки и их половины.
3. Задание 316 на с. 64 (можно вынести на доску).
Поставьте, если нужно, скобки, чтобы равенства стали верными:
1 000 – 990 : 10 + 1 = 902 960 : 2 + 6 = 120
III. Работа над новым материалом.
Перед разбором нового вида уравнения учитель должен повторить с учащимися взаимосвязь между компонентами и результатом сложения. Этому способствует задание 309. Можно данную в учебнике таблицу записать заранее на доске, чтобы вызываемые к доске ученики заполнили пустые клетки в ней, каждый раз поясняя, как они находят неизвестное первое или второе слагаемое.
Слагаемое
3
62
1017
Слагаемое
24
179
75
Сумма
7
82
76
964
523
8192
После заполнения всей таблицы учащимися формулируется общий вывод: если из суммы вычесть одно из слагаемых, то получится другое слагаемое.
Затем учитель знакомит учащихся с новым видом уравнений. (На доске представлена запись, дается подробное объяснение.)
Учитель. В уравнении х +15 = 68 : 2 неизвестно первое слагаемое, второе слагаемое 15, а сумма выражена частным чисел 68 и 2.
Найдем сначала сумму (68 : 2 = 34). Значит, сумма равна 34. Мы знаем, что если из суммы вычесть одно слагаемое, то получится другое слагаемое. Для решения надо из суммы 34 вычесть известное слагаемое 15 (34 – 15 = 19). Значит, х = 19. Выполним проверку, подставив вместо х найденное число: 19 + 15 = 34 и 68 : 2 = 34. В левой и правой части уравнения получили одно и то же число. Значит, уравнение решено верно.
Для закрепления знаний учитель просит учащихся открыть учебник на с. 64 и объяснить решение второго уравнения и проверку к нему. Затем дети с подробным комментированием записывают и решают уравнения из задания 310.
Задание 311 ученики решают под руководством учителя.
Ф и з к у л ь т м и н у т к а
IV. Работа над пройденным материалом.
Для закрепления письменных приемов сложения и вычитания можно предложить учащимся решить с комментированием задание 312.
V. Итоги урока.
Учитель. Ребята, что нового узнали на уроке?
Дети. Мы познакомились с новым видом уравнений, учились их решать.
Учитель. Каким правилом мы пользовались при решении уравнений?
Дети. Если из суммы вычесть одно слагаемое, то получим другое.