Выдает раздаточный материал для выполнения практической работы
Выполняют проверочную работу в тетрадях.
Частично-поисковый
6. Подведение итогов занятия
3 мин
Отмечают хорошую работу одних, недостаточную работу других; выставляет оценки за работу на занятии.
Слушают преподавателя
Слушают преподавателя
7. Информация учащихся о домашнем задании.
2 мин
Предлагает учащимся записать домашнее задание: Выполнить тест на пройденный материал.
Записывают задания.
Ход занятия:
Организационный момент.
Объяснение и ход занятия.
Не секрет, что студенты порой перегружены объемом учебного материала и домашнего задания. Интегрированные уроки – это один из вариантов решения этой проблемы и один из способов сделать процесс обучения более интересным и направленным на применение полученных знаний на практике.
Занятие проводится в игровой форме.
Подготовка ½ группы к проведению соревнования.
Все учащиеся разбиваются на две команды (по 6человек), выбираются капитаны команд, проводится жеребьевка. Счетная комиссия из 2 человек и 1 помощник. Остальные студенты-болельщики.
Прежде, чем повторять теоретическую часть материала, предлагаю вам
прослушать краткое сообщение (помощник).
Производная - одно из фундаментальных понятий математики. Оно возникло в XVII веке в связи с необходимостью решения ряда задач из физики, механики и математики. Независимо друг от друга И. Ньютон и Г. Лейбниц разработали аппарат, который мы используем в настоящее время. Девизом многих математиков 17 века был: "Двигайтесь вперед, и вера в правильность результатов к вам придет!" Исследование поведения различных систем часто не обходится без анализа и решения уравнений, включающих как параметры системы, так и скорости их изменения, аналитическим выражением которых являются производные. Производная находит широкое применение в математике, физике и технике, естествознании и химии, сельском хозяйстве и военном деле, экономике: ·в математике производная используется для вычисления производной, исследования функций, в практических задачах оптимизации. ·в физике с помощью производной находится сила, мощность, скорость и ускорение, теплоёмкость и т.д. ·в химии и естествознании – для определения дозы лекарства, при которой побочный эффект будет минимальным, а реакция максимальной, ·в военном деле – в задачах о преследовании, процессе наведения боевых ракет на цель поражения, ·в сельском хозяйстве – для определения рационального соотношения сторон прямоугольников, которые являются основой сети полевых работ, ·в экономике – для анализа производственных функций, широко применяемых в экономических исследованиях
Время – 5минут.
2. Проверка домашнего задания. Проводится в форме игры-соревнования.
Конкурс-разминка. (1 минута на объяснение конкурса)
Вопросы задаются командам поочередно. Если команда не знает правильный ответ, то право голоса переходит к другой команде.
Что такое приращение аргумента?
Что называется приращением функции?
Что называется производной функции?
Что такое дифференцирование?
Сформулировать правило нахождения производной сложной функции.
В чем заключается геометрический смысл производной?
В чем заключается физический смысл производной?
Чему равна производная постоянной?
Чему равна производная степенной функции?
Назвать механический смысл производной.
Время – 6 минут.
3. Проверка опорных знаний учащихся. Проводится в форме игры-соревнования.
Конкурс Отвечай - не зевай (1 минута на объяснение конкурса).
Кластер с формулами производной для каждой команды, в которых известна либо правая часть, либо левая (надо дописать, можно начинать с любой ячейки).
Учащиеся по очереди выходят к доске. Выигрывает та команда, которая быстрее и правильно справится с заданиями.
Задание первой команде
Задание второй команде
? = Сf /(x)
? = U/ V+ UV/
(U/V)/ =?
(U+V)/ = ?
С/=?
(хn)/=?
S/=?
V / = ?
? = (U- V)/
x/=?
Время –4минуты
в) Конкурс «Необычайное домино» (1 минута на объяснение конкурса).
К доске подходят участники команд поочередно. Если команда выбрала неправильную карточку или не знает, какую выбрать, то право выбора карточки переходит к другой команде.
(
Начальная карточка
C)'
6х
(1/х)'
0
(9х+3)'
8х3
½
( 3x 2)'
9
(5 х)'
-1/х2
(4х4)'
16x3
(√х) '
5
(1/2х)'
9х2
(2х4)'
1/(2√х)
(3х3)'
Время – 6 минут.
Конкурс « Найди свою пару» (1 минута на объяснение конкурса).
Указать пары “функция – график производной этой функции”. На столе у каждого студента находятся карточки с тестом, нужно указать пары “функция – график производной этой функции”.
График
Функция
у = 2х – х3
у/ = 2 – 3х2
у/ = ….
у/ = …
у = 2х- 1/2х2
у/ = …
у = 2х – 7 у/ = …
у = 2х + х4
у / = …
Ответы к заданию
График
Функция
у = 2х – х3
у/ = 2 – 3х2
у/ = х2 + 2
у/ = х
у = 2х- 1/2х2
у/ = 2 - х
у = 2х – 7
у/ = 2
у = 2х + х4
у / = 2 + 4х3
Время – 20минут.
д) Во время выполнения предыдущего конкурса проводится работа с болельщиками. Одна половина поддерживает 1 команду, другая – 2 команду.
Звучит аудиозапись текста: «Ньютон - великий английский математик» на английском языке.
По окончании работы с болельщиками помощник собирает карточки с тестами.
е) Конкурс для капитанов (1 минута на объяснение конкурса).
Каждому капитану дана задача для самостоятельного решения. Побеждает тот, кто правильно и первым выполняет задание.
Преподаватель математики читает: Точка движется по некоторому закону. Найти ее ускорение в некоторый момент времени.
S –в м, t – в сек
Для капитана 1 команды
Для капитана 2 команды
S(t) = 2t3+3t+1 t=3c
S(t) = 3t3+ t+3 t=2c
a(3) = 36м/с2
a(2) = 36м/с2
Время – 3 минуты.
ж) Конкурс – «Кот в мешке» (1 минута на объяснение конкурса).
Каждый капитан вызывает по 1 игроку от команды. Студенты получают задания методом случайного выбора. На выполнение задания время 5 минут. Команда, которая не уложилась в отведенное время, лишается права на ответ, право ответа переходит к команде- сопернице, которая в случае правильного ответа получает дополнительный балл.
Задания (в форме теста)
Найти угловой коэффициент касательной, проведенной к графику функции у = sin 2x в точке с абсциссой х= 0
1.1
2.2
3.0
4.-1
Ответ.2
Найти угловой коэффициент касательной, проведенной к графику функции у = cos 2x в точке с абсциссой х= π/2
As I`ve told you we are at the unusual lesson, where we`ve spoken English and Russian. Оur lesson is closely connected with mathematics and as a matter of fact with mathematician I Newton, the founder of the differential and integral calculus.
While working on the computer it/s often used smiling or happy faces or sad ones.
If you/ve enjoyed our lesson, give us smiling faces if not sad faces. I/ll give you some minutes.