Учитель показывает слайд №5 с изображением церкви и других строений, одна из частей которых - пирамида.
V. Объяснение темы
Задание (вызывается ученик к доске).
Изобразить произвольную пирамиду PA1A2 ... Аn (ученик работает на доске, класс в тетрадях). Учитель: «Возьмем произвольную пирамиду Р А1А2 ... Аn и проведем секущую плоскость β, параллельно плоскости α основания пирамиды и пересекающую боковые ребра в точках В1, В 2, ... Вn. Плоскость β разбивает пирамиду на два многогранника. Многогранник, гранями которого являются n-угольники А1А2, ... Аn и В1В2, ... Вn (нижнее и верхнее основания), расположенные в параллельных плоскостях, и n-четырехугольников А1А2В2В1, А2А3В3В2, ... АnА1В1Вn (боковые грани), называется усеченной пирамидой.
Отрезки A1B1, А2В2, ... АnВn называются боковыми ребрами усеченной пирамиды. Усеченную пирамиду с основаниями А1А2...Аn и В1В2...Вn обозначают так: А1А2...Аn В1В2...Вn. Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой усеченной пирамиды».
По рис. 76 (стр. 64 учебника) назовите верхнее и нижнее основания, боковые грани и ребра усеченной пирамиды, высоту усеченной пирамиды.
Усеченная пирамида называется правильной, если она получена сечением правильной пирамиды плоскостью, параллельной основанию. Основания правильной усеченной пирамиды - правильные многоугольники, а боковые грани - равнобедренные трапеции. Высоты этих трапеций называются апофемами. Как найти сумму площадей ее боковых граней?
Площадью боковой поверхности усеченной пирамиды называется сумма площадей ее боковых граней.
где р1 и р2 - периметры оснований, h - апофема.
Теорема
Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему
Решение: Пусть О и О1 - центры оснований пирамиды.
1) Из ΔАВС имеем: АВ = R√3, R = АО.
2) Из ΔА1B1C1 находим
3) EK = ОK - OE, ОЕ = O1М, отсюда
4) Из ΔAA1F имеем:
5) Из ΔМЕК имеем: (Ответ: )
VII. Подведение итогов
Домашнее задание
Тест (В-1), (В-2).
Тест (см. приложение)
Оценка ставится в зависимости от суммы баллов, набранных учеником, причем правильный ответ оценивается в 2 балла, неправильный - в 1, ответ «не знаю» оценивается в 0 баллов.
Примерная шкала оценок.
Оценки: 3 4 5
Баллы: 3-7 8-10 12
Ответы
1
2
3
4
5
6
Вариант I
в
г
в
б
б
в
Вариант II
в
а
г
б
б
г
Приложение
Т-1.
Вариант I
1. Из данных утверждений выберите верное: а) все ребра правильной пирамиды равны; б) площадь поверхности пирамиды равна половине произведения периметра основания на апофему; в) боковые грани усеченной пирамиды - трапеции; г) утверждения a-в не верны.
2. Найдите площадь боковой поверхности пирамиды, все грани которой наклонены к основанию под углом 60°, а в основании лежит прямоугольный треугольник с катетами 3 см и 6 см.
а) 9 см2, б) 10 см2, в) 12 см2, г) другой ответ.
3. В правильной четырехугольной пирамиде сторона основания равна 5 см, а плоский угол при вершине пирамиды 60°. Найдите боковое ребро пирамиды.
а) 6 см, б) в) 5 см, г) д) другой ответ.
4. В основании пирамиды SABC лежит равнобедренный треугольник ABC, в котором ВС = 12 см, а АВ = АС = 10 см. Найдите площадь сечения ASM, если оно перпендикулярно плоскости основания, а все боковые ребра пирамиды равны 10 см.
а) б) в) 31 см2, г) другой ответ.
5. Боковые ребра пирамиды SABC равны между собой. SD - высота пирамиды. Точка D лежит внутри ΔABC. ТреугольникABC:
а) прямоугольный;
б) остроугольный;
в) тупоугольный;
г) недостаточно данных.
6. Найдите площадь диагонального сечения правильной усеченной четырехугольной пирамиды, если ее высота равна √2 см, а стороны основания 1 см и 4 см.
а) 10 см2, б) 2,5 см2, в) 5 см2, г) другой ответ.
Вариант II
1. Из данных утверждений выберите верное: а) все грани правильной пирамиды равны; б) площадь боковой поверхности правильной усеченной пирамиды равна произведению суммы периметров оснований на апофему; в) боковые грани усеченной пирамиды - трапеции; г) утверждения а-b не верны.
2. Найдите площадь боковой поверхности пирамиды, все грани которой наклонены к основанию над углом 45°, а в основании лежит квадрат с диагональю, равной 18√2 см.
3. В правильной треугольной пирамиде сторона основания равна 4√3 см, а плоский угол при вершине пирамиды равен 90°. Найдите высоту пирамиды,
а) 2√2 см, б) 3√2 см, в) √2 см, г) 4√2 , д) другой ответ.
4. В основании пирамиды ABCD, все боковые ребра которой равны √74 см, лежит прямо угольник со сторонами АВ = 8 см и ВС = 6 см. Найдите площадь сечения MSN, если оно перпендикулярно плоскости основании, а ВМ : МС = 2 : 1.
а) 14√l4 см, б) 14√15 см, в) 15√15 см, г) другой ответ.
5. Боковые ребра пирамиды SABC равны между собой. SD - высота пирамиды. Точка D - середина ребра ВС. ТреугольникAВС:
а) прямоугольный,
б) остроугольный,
в) тупоугольный,
г) недостаточно данных.
6. Площадь диагонального сечения в правильной усеченной четырехугольной пирамиды равна 20 см2, а стороны основания 2 см и 8 см. Найдите ее высоту.