Тема: Квадратные уравнения.
Эпиграф к уроку: "Предмет математики настолько серьезен, что полезно не упускать случая делать его немного занимательным".
Паскаль
Цели:
Показать уровень усвоения программного материала по теме «Квадратные уравнения», навыки решения квадратных уравнений с помощью применения формул корней квадратных уравнений, изучить новый способ решения квадратных уравнений.
Развитие вычислительных навыков: навыков решения квадратных уравнений с помощью формул, навыки нахождения дискриминанта квадратного уравнения, развитие логического мышления,
Способствовать рациональной организации труда, внимательность, активное участие в учебно-познавательном процессе, самостоятельность, самокритичность.
Оборудование к уроку: тест "Квадратные уравнения", интерактивная доска, таблицы, карточки.
Ход урока
1. Организационный момент
Здравствуйте, ребята и гости нашего урока! Математику не зря называют "царицей наук", ей больше, чем какой-либо другой науке, свойственны красота, изящность и точность. Одно из замечательных качеств математики - любознательность. Постараемся доказать это на уроке. Мы с вами начали изучать новый большой раздел «Квадратные уравнения»,
Эпиграфом к уроку я взяла слова великого математика Паскаля "Предмет математики настолько серьезен, что полезно не упускать случая делать его немного занимательным". В течение урока мы еще вернемся к этим словам.
2.Эмоциональный настрой
Если день начинать с улыбки, то можно надеяться, что он пройдет удачно. Давайте сегодняшнее занятие проведем с улыбкой. Главная задача – быть внимательными, активными, находчивыми, а главное – трудолюбивыми. Показывать, что мы знаем и как умеем работать.
3. Устный счет
Вычислить:
Актуализация знаний по теме квадратные уравнения
Виды уравнений
ЦОР №1289 на сайте e.edu.kz
Тест "Квадратные уравнения".
Итак, мы повторили, как можно решить квадратное уравнение. Сейчас я хотел бы проверить, как вы усвоили эти формулы и определения.
Ученики получают карточки с заданиями. Заполняют пропущенные слова в карточках.
I ВАРИАНТ
1. Уравнение вида , где a, b, c - заданные числа, a0, x - переменная, называется...
2. Полное квадратное уравнение не имеет корней, если D ...
3. Уравнение вида называется...
4. Квадратное уравнение имеет два корня, если...
5. Дано уравнение . D =...
II ВАРИАНТ
1. Если квадратное уравнение, то a... коэффициент, с...
2. Уравнение x² = a, где a
3. Полное квадратное уравнение имеет единственный корень, если ...
4. Уравнение вида ax² + c = 0, где a 0, c 0, называют ... квадратным уравнением.
5. Дано уравнение x²- 6x + 8 = 0. D =...
Проводится взаимопроверка. Ответы показываем через интерактивную доску.
4. Работа в парах
Вернемся к эпиграфу нашего урока. Попытаемся сделать математику хотя бы сегодня на уроке немного более занимательной.
Вам необходимо угадать, что же находится в черном ящике.
Математика и биология
Учитель: Угадайте, что в ящике. Даю три определения этому предмету:
1. Непроизводная основа слова.
2. Число, которое после постановки его в уравнение обращает уравнение в тождество.
3. Один из основных органов растений.
/Корень/
Учитель: Вы должны определить, какого растения это корень, решив следующие уравнения в парах.
1. x²- 8x + 15 = 0
2. x² - 11x + 18 = 0
3. x² - 5x - 6 = 0
4. x² - 4x + 4 = 0
5. 3x² + 4x + 20 = 0
6. 5x²- 3x - 2 = 0
Учитель: Игра "Математическое лото". Найдите полученный ответ на экране. Проверить результат. Если ученики получают правильный ответ, то получат изображение розы, иначе – слайд с текстом «Проверьте решение».
Учитель: Что это за растение?
Посмотрите - у ограды
Расцвела царица сада.
Не тюльпан и не мимоза,
А в шипах красотка...
Лик пахучий,
А хвост колючий.
Яркие, пахучие -
Ай-ай-ай! Колючие!
Ответ: Роза.
Учитель: Значит, в черном ящике лежал корень розы, о которой в народе говорят: "Цветы ангельские, а когти дьявольские". О розе существует интересная легенда: по словам Анакреона, родилась роза из белоснежной пены, покрывающей тело Афродиты, когда богиня любви выходила из моря. Поначалу роза была белой, но от капельки крови богини, уколовшейся о шип, стала алой.
Учитель: Видите, ребята, все в этом мире взаимосвязано: математика, русский язык и литература, биология. Мы увидели, что слово "корень" встречается на уроках биологии и математики. И не только.
Немного истории.
По словам математика Лейбница, "кто хочет ограничиться настоящим без знания прошлого, тот никогда его не поймет".
Ученик заранее готовит сообщение об истории квадратных уравнений, с презентацией.
Кстати, а вы знаете, когда появились первые квадратные уравнения?
Очень давно. Их решали в Вавилоне около 2000 лет до нашей эры, а Европа три года назад отпраздновала 813 летие квадратных уравнений, потому что именно в 1202 году итальянский ученый Леонард Фибоначчи изложил формулы квадратного уравнения. И лишь в 17 веке, благодаря Ньютону, Декарту и другим ученым эти формулы приняли современный вид.
История математики уходит своими корнями в древние времена. Задачи, связанные с квадратными уравнениями решались ещё в Древнем Египте и Вавилоне. Теория уравнений интересовала и интересует математиков всех времён и народов.
Испанский математик Вальмес в 1486 году как-то в семейном кругу обмолвился о том, что нашел формулу для решения уравнения четвертой степени. В числе гостей оказался влиятельный инквизитор. Услышав слова Вальмеса, он заявил, что волей Божьей решать эти уравнения человеку не дано, а найти формулу можно было только с помощью дьявола.
В ту же ночь Вальмес был брошен в тюрьму, а через три недели сожжен на костре за связь с дьяволом. Лишь через 100 лет решение этих уравнений было найдено вторично.
В древней Индии были распространены публичные соревнования в решении трудных задач. Задачи часто представлялись в стихотворной форме.
6. Продвинутые способы решения квадратных уравнений
Квадратные уравнения – это фундамент, на котором покоится величественное здание алгебры. Они находят широкое применение при решении различных тригонометрических, показательных, логарифмических, иррациональных, трансцендентных уравнений и неравенств, большого количества разных типов задач.
В школьном курсе математики подробно изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать многие уравнения. В математической науке есть десять способов решения квадратных уравнений.
Способы решения квадратных уравнений, изучаемые в школе:
Разложение левой части на множители
Метод выделения полного квадрата
С применением формул корней квадратного уравнения
С применением теоремы Виета
Графический способ
Продвинутые способы решения квадратных уравнений:
Сегодня на уроке мы познакомимся с новым способом решения квадратных уравнений, который не изучается в школе. Но он очень интересный и вовсе не сложный.
Решим уравнение 2х2 – 11х + 15 = 0.
Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение
у2 – 11у + 30 = 0.
Согласно теореме Виета
у1 = 5 х1 = 5/2 x1 = 2,5
у2 = 6 x2 = 6/2 x2 = 3.
Ответ: 2,5; 3.
Пример:
Решите самостоятельно:
1 вариант: 2 вариант:
ЦОР №1289 на сайте e.edu.kz
узнайте достопримечательность
7. Викторина. "Дальше, дальше..."
В течение одной минуты ребята отвечают на вопросы, приведенные ниже:
1. Уравнение второй степени.
2. Сколько корней имеет квадратное уравнение, если D больше 0?
3. Равенство с переменной?
4. От чего зависит количество корней квадратного уравнения?
5. Как называется квадратное уравнение, у которого первый коэффициент - 1?
6. Сколько корней имеет квадратное уравнение, если дискриминант меньше 0?
7. Что значит решить уравнение?
8. Есть у любого слова, у растения и может быть у уравнения?
7. Итог урока.
Учитель:
Что нового мы узнали на уроке?
Какое уравнение называется квадратным?
Какие виды квадратных уравнений вы знаете?
И закончить сегодняшний урок хотелось бы словами великого математика У. Сойера: «Человеку, изучающему алгебру, часто полезнее решить одну и ту же задачу тремя различными способами, чем решить три-четыре различные задачи. Решая одну задачу различными методами, можно путем сравнений выяснить, какой из них короче и эффективнее. Так вырабатывается опыт»
Оценивание учащихся. Сообщение домашнего задания.