Методы организации учебно-познавательной деятельности:
наглядные;
практические;
по мыслительной деятельности: индуктивный;
по усвоению материала: частично-поисковый, репродуктивный;
стимулирующие: поощрения;
контроля: устный фронтальный опрос.
План урока
Устные упражнения (найти производную)
Изучение нового материала
Решение заданий.
Подведение итогов урока.
Оборудование: карточки
Ход урока
“Человек лишь там чего – то добивается, где он верит в свои силы”
Л. Фейербах
I. Организационный момент.
Организация класса в течение всего урока, готовность учащихся к уроку, порядок и дисциплина.
Постановка целей учения перед учащимися, как на весь урок, так и на отдельные его этапы.
Устный счет
1. Найдите производные:
( ) ' () ' ()'
', ()' , (4sin x)', (cos2x)', (tg x)', '
2. Логический тест.
а) Вставить пропущенное выражение.
5х3-6х
15х2-6
30х
2sinx
2cosx …
cos2x
… …
II. Изучение нового материала.
Пойдем по пути Ньютона и Лейбница и посмотрим, каким способом можно анализировать процесс, рассматривая его как функцию времени.
Введем несколько понятий, которые помогут нам в дальнейшем.
Графиком линей ной функции y=kx+ b является прямая, число k называют угловым коэффициентом прямой k=tg, где – угол прямой, то есть угол между этой прямой и положительным направлением оси Ох.
Рисунок 1
Рассмотрим график функции у=f(х). Проведем секущую через любые две точки, например, секущую АМ. (Рис.2)
Угловой коэффициент секущей k=tg. В прямоугольном треугольнике АМС (объясните почему?). Тогда tg = = , что с точки зрения физики есть величина средней скорости протекания любого процесса на данном промежутке времени, например, скорости изменения расстояния в механике.
Рисунок 2
Рисунок 3
Сам термин “скорость” характеризует зависимость изменения одной величины от изменения другой, и последняя необязательно должна быть временем.
Итак, тангенс угла наклона секущей tg = .
Нас интересует зависимость изменения величин в более короткий промежуток времени. Устремим приращение аргумента к нулю. Тогда правая часть формулы – производная функции в точке А (объясните почему). Если х – 0, то точка М движется по графику к точке А, значит прямая АМ приближается к некоторой прямой АВ, которая является касательной к графику функции у = f(х) в точке А. (Рис.3)
Угол наклона секущей стремится к углу наклона касательной.
Геометрический смысл производной состоит в том, что значение производной в точке равно угловому коэффициенту касательной к графику функции в точке.
Механический смысл производной.
Тангенс угла наклона касательной есть величина, показывающая мгновенную скорость изменения функции в данной точке, то есть новая характеристика изучаемого процесса. Эту величину Лейбниц назвал производной, а Ньютон говорил, что производной называется сама мгновенная скорость.
III. Решение заданий.
Показать на доске.
Угловой коэффициент касательной к кривой f(х) = х3 в точке х0 – 1 есть значение производной этой функции при х = 1. f’(1) = 3х2; f’(1) = 3.
Можно ли найти производную скорости? Используется ли эта величина в физике? Как она называется? (Ускорение).
Мгновенная скорость равна нулю. Что можно сказать о движении тела в это момент? (Это момент остановки).
Каков физический смысл следующих высказываний: производная движения равна нулю в точке t0;при переходе через точку t0производная меняет знак? ( Тело останавливается; меняется направление движения на противоположное).
IV. Подведение итогов урока
1) В чем состоит геометрический смысл производной? 2) В чем состоит механический смысл производной?