Конспект урока-электива по математике для 10 класса "Решение задач на смеси и сплавы".
Конспект урока-электива по математике для 10 класса "Решение задач на смеси и сплавы".
Данный конспект предназначен для работы в классах с углубленным изучением математики. Желательно заранее расдать учащимся условия задач, которые будут решаться на уроке различными способами. Возможно проведение данного урока как интегрированниго двумя учителями сразу - учителем математики и учителем химии.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Конспект урока-электива по математике для 10 класса "Решение задач на смеси и сплавы". »
“Только из союза двоих, работающих вместе и при помощи друг друга, рождаются великие вещи.”
Антуан Де Сент-Экзюпери
Математика многообразна и многогранна. Существует ряд ситуаций в образовательном процессе, когда при изучении какой-либо темы по физике, химии, биологии и т.д. затрагиваются понятия математики, например, существуют задачи, которые решают как на уроках математики, так и на уроках химии. Способы решения задач представляют и учителя химии, и математики, но есть проблема: математики знают математику, а химики - химию. И не всегда способы совпадают.
1. Основные химические понятия
Приведем некоторые указания к решению задач на растворы.
Основными компонентами этого типа задач являются:
а) массовая доля растворенного вещества в растворе;
б) масса растворенного вещества в растворе;
в) масса раствора.
Предполагают, что:
а) все получившиеся смеси и сплавы являются однородными;
б) смешивание различных растворов происходит мгновенно;
г) объемы растворов и массы сплавов не могут быть отрицательными.
Определения и обозначения.
Массовая доля растворенного вещества в растворе -это отношение массы этого вещества к массе раствора.
где - массовая доля растворенного вещества в растворе;
- масса растворенного вещества в растворе;
- масса раствора.
Следствия формулы (1):
Введем обозначения:
- массовая доля растворенного вещества в первом растворе;
- массовая доля растворенного вещества во втором растворе;
- массовая доля растворенного вещества в новом растворе, полученном при смешивании первого и второго растворов;
m1(в-ва), m2(в-ва), m(в-ва) - массы растворенных веществ в соответствующих растворах;
m1(р-ра), m2(р-ра), m(р-ра) - массы соответствующих растворов.
Основными методами решения задач на смешивание растворов являются: с помощью расчетной формулы, “Правило смешения”, “Правило креста”, графический метод, алгебраический метод.
Приведем описание указанных методов.
1.1. С помощью расчетной формулы
В наших обозначениях, получим формулу для вычисления массовой доли вещества (?) в смеси.
1. Масса полученного при смешивании раствора равна:
m(р-ра) = m1(р-ра) + m2(р-ра).
2. Определим массы растворенных веществ в первом и втором растворах:
m1(в-ва)= •m1(р-ра), m2(в-ва)= •m2(р-ра).
3. Следовательно, масса растворенного вещества в полученном растворе вычисляется как сумма масс веществ в исходных растворах:
4. Таким образом, массовая доля растворенного вещества в полученном растворе равна:
или
или
где - массы соответствующих растворов.
Замечание:При решении задач удобно составлять следующую таблицу.
1-й раствор
2-й раствор
Смесь двух растворов
Масса растворов
m1
m2
m1 + m2
Массовая доля растворенного вещества
Масса вещества в растворе
m1
m2
(m1 + m2)
1.2. “Правило смешения”
Воспользуемся формулой (4):
тогда
Отсюда
Таким образом, отношение массы первого раствора к массе второго равно отношению разности массовых долей смеси и второго раствора к разности массовых долей первого раствора и смеси.
Аналогично получаем, что при
Замечание: Формула (5) удобна тем, что на практике, как правило, массы веществ не отвешиваются, а берутся в определенном отношении.
1.3. “Правило креста”
“Правилом креста” называют диагональную схему правила смешения для случаев с двумя растворами.
Слева на концах отрезков записывают исходные массовые доли растворов (обычно слева вверху-большая), на пересечении отрезков - заданная, а справа на их концах записываются разности между исходными и заданной массовыми долями. Получаемые массовые части показывают в каком отношении надо слить исходные растворы.
1.4. Графический метод
Отрезок прямой (основание графика) представляет собой массу смеси, а на осях ординат откладывают точки, соответствующие массовым долям растворенного вещества в исходных растворах. Соединив прямой точки на осях ординат, получают прямую, которая отображает функциональную зависимость массовой доли растворенного вещества в смеси от массы смешанных растворов в обратной пропорциональной зависимости
Полученная функциональная прямая позволяет решать задачи по определению массы смешанных растворов и обратные, по массе смешанных растворов находить массовую долю полученной смеси.
Построим график зависимости массовой доли растворенного вещества от массы смешанных растворов. На одной из осей ординат откладывают точку, соответствующую массовой доли , а на другой - . Обозначим на оси абсцисс точки А и Вс координатами (0,0) и (m1 + m2,0), соответственно. На графике точка А(0,0) показывает, что массовая доля всего раствора равна , а точка В(m1 + m2,0) - массовая доля всего раствора равна . В направлении от точки Ак точке Ввозрастает содержание в смеси 2-го раствора от 0 до m1+ m2 и убывает содержание 1-го раствора от m1+ m2 до 0. Таким образом, любая точка на отрезкеАВбудет представлять собой смесь, имеющую одну и ту же массу с определенным содержанием каждого раствора, которое влияет на массовую долю растворенного вещества в смеси.
Замечание: Данный способ является наглядным и дает приближенное решение. При использовании миллиметровой бумаги можно получить достаточно точный ответ.
1.5. Алгебраический метод
Задачи на смешивание растворов решают с помощью составления уравнения или системы уравнений.
2. Примеры решения задач. (См. приложение)
Задача 1. Смешали 10%-ный и 25%-ный растворы соли и получили 3 кг 20%-ного раствора. Какое количество каждого раствора в килограммах было использовано?
Задача 2. Имеются два сосуда, содержащие 42 кг и 6 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 40 % кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 50 % кислоты. Сколько килограммов кислоты содержится в первом растворе?
Задача 3. Смешав 70 %-ый и 60 %-ый растворы кислоты и добавив 2 кг. Чистой воды, получили 50 %-ый раствор кислоты. Если бы вместо 2 кг. Воды добавили 2 кг. 90 %-го раствора той же кислоты, то получили бы 70 %-ый раствор кислоты. Сколько килограммов 70 %-го раствора использовали для приготовления смеси?
В заключение предлагаем несколько задач для самостоятельного решения. Эти задачи могут встретиться как на уроках химии, так и в вариантах ЕГЭ по математике.
Требуется приготовить 1 кг 15%-го раствора аммиака. Сколько нужно взять для этого 25%-го раствора аммиака и воды?
К 80 г раствора соли неизвестной концентрации прибавили 40 г воды. Вычислите массовую долю соли в исходном растворе, если после разбавления она стала равной 18%.
Из 400 г 20%-го раствора соли упариванием удалили 100 г воды. Чему стала равна массовая доля соли в полученном растворе?
В результате упаривания 450 г 10%-го раствора хлорида кальция его массовая доля увеличилась вдвое. Вычислите массу испарившейся воды.
Имеются два раствора аммиака с массовой долей 25% и 5%. Сколько граммов каждого раствора надо взять, чтобы получить 125 г 10%-го раствора аммиака?
Имеются два сплава меди со свинцом. Один сплав содержит 15% меди, а другой 65%. Сколько нужно взять каждого сплава, чтобы получилось 200г сплава, содержащего 30% меди?