2. Диаметр основания конуса равен 108, а длина образующей — 90. Найдите высоту конуса.
3. В сосуд, имеющий форму правильной треугольной призмы, налили 2700 см3 воды и погрузили в воду деталь. При этом уровень воды поднялся с отметки 20 см до отметки 33 см. Найдите объем детали. Ответ выразите в см3.
4. В бак, имеющий форму цилиндра, налито 10 л воды. После полного погружения в воду детали, уровень воды в баке поднялся в 1,6 раза. Найдите объём детали. Ответ дайте в кубических сантиметрах, зная, что в одном литре 1000 кубических сантиметров.
6. От деревянной правильной пятиугольной призмы отпилили все её вершины (см. рисунок). Сколько граней у получившегося многогранника (невидимые рёбра на рисунке не изображены)?
7. Во сколько раз увеличится площадь поверхности пирамиды, если все ее ребра увеличить в 40 раз?
8. Найдите объем многогранника, вершинами которого являются точки , , , прямоугольного параллелепипеда , у которого , , .
9. Найдите расстояние между вершинами и многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
10. Площадь полной поверхности конуса равна 12. Параллельно основанию конуса проведено сечение, делящее высоту пополам. Найдите площадь полной поверхности отсеченного конуса.
11. Высота конуса равна 5, а диаметр основания – 24. Найдите образующую конуса.
12. Во сколько раз увеличится объем правильного тетраэдра, если все его ребра увеличить в 4 раза?
13.Площадь боковой поверхности цилиндра равна а диаметр основания равен 5. Найдите высоту цилиндра.
14. В прямоугольном параллелепипеде ABCDA1B1C1D1 известны длины рёбер AB = 8, AD = 6, AA1 = 21. Найдите синус угла между прямыми CD и A1C1.
19. Ребра тетраэдра равны 1. Найдите площадь сечения, проходящего через середины четырех его ребер.
20. Найдите квадрат расстояния между вершинами и многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
21.На рисунке изображён многогранник (все двугранные углы прямые). Сколько вершин у этого многогранника?
22. Даны две кружки цилиндрической формы. Первая кружка вдвое выше второй, а вторая в четыре раза шире первой. Во сколько раз объём второй кружки больше объёма первой?
24. В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 80 см. На какой высоте будет находиться уровень воды, если ее перелить в другой такой же сосуд, у которого сторона основания в 4 раза больше, чем у первого? Ответ выразите в см.
25. В сосуде, имеющем форму конуса, уровень жидкости достигает высоты. Объём жидкости равен 810 мл. Сколько миллилитров жидкости нужно долить, чтобы наполнить сосуд доверху?
27. В сосуде, имеющем форму конуса, уровень жидкости достигает высоты. Объём жидкости равен 90 мл. Сколько миллилитров жидкости нужно долить, чтобы наполнить сосуд доверху?
29. Во сколько раз увеличится площадь поверхности шара, если радиус шара увеличить в 2 раза?
30.Вода в сосуде цилиндрической формы находится на уровне h = 100 см. На каком уровне окажется вода, если её перелить в другой цилиндрический сосуд, у которого радиус основания вдвое больше, чем у первого? Ответ дайте в сантиметрах.
32. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8. Площадь ее поверхности равна 288. Найдите высоту призмы.
33.Вода в сосуде цилиндрической формы находится на уровне h = 80 см. На каком уровне окажется вода, если её перелить в другой цилиндрический сосуд, у которого радиус основания в четыре раза больше, чем у данного? Ответ дайте в сантиметрах.
34. Найдите тангенс угла многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
35. Объем правильной четырехугольной пирамиды SABCD равен 116. Точка E — середина ребра SB. Найдите объем треугольной пирамиды EABC.
36. Найдите угол многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые. Ответ дайте в градусах.
37. Объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины, равен 2. Найдите объём куба.
38. В цилиндрическом сосуде уровень жидкости достигает 16 см. На какой высоте будет находиться уровень жидкости, если ее перелить во второй сосуд, диаметр которого в раза больше первого? Ответ выразите в см.
39. В прямоугольном параллелепипеде известно, что Найдите длину ребра .
40. В бак, имеющий форму прямой призмы, налито 12 л воды. После полного погружения в воду детали, уровень воды в баке поднялся в 1,5 раза. Найдите объём детали. Ответ дайте в кубических сантиметрах, зная, что в одном литре 1000 кубических сантиметров.
41. Даны две кружки цилиндрической формы. Первая кружка в четыре раза ниже второй, а вторая в полтора раза шире первой. Во сколько раз объём первой кружки меньше объёма второй?
42. В правильной треугольной призме , все ребра которой равны 3, найдите угол между прямыми и Ответ дайте в градусах.
43. Высота конуса равна 72, а длина образующей — 90. Найдите диаметр основания конуса.
44. Найдите квадрат расстояния между вершинами и многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.
45. Найдите объем многогранника, вершинами которого являются точки , , , правильной шестиугольной призмы , площадь основания которой равна 6, а боковое ребро равно 3.
46. От треугольной пирамиды, объем которой равен 12, отсечена треугольная пирамида плоскостью, проходящей через вершину пирамиды и среднюю линию основания. Найдите объем отсеченной треугольной пирамиды.
47. Объем первого цилиндра равен 12 м3. У второго цилиндра высота в три раза больше, а радиус основания — в два раза меньше, чем у первого. Найдите объем второго цилиндра. Ответ дайте в кубических метрах.
48. Деталь имеет форму изображённого на рисунке многогранника (все двугранные углы прямые). Цифры на рисунке обозначают длины рёбер в сантиметрах. Найдите площадь поверхности этой детали. Ответ дайте в квадратных сантиметрах.
49. Объем куба равен 12. Найдите объем четырехугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.