Просмотр содержимого документа
«Задания для подготовки к ОГЭ по теории вероятностей»
Задача 1. Сколько различных четырехзначных чисел можно составить из цифр 0, 1, 2, 3?
Решение: На первое место можно поставить цифры 1, 2, 3(3 способа), на второе, третье и четвертое место – 0,1,2,3 (4 способа). Применяя комбинаторный принцип умножения получим 3444 = 192 числа ( 2 способ: 3=343=192)
Задача 2. Сколько различных звукосочетаний можно взять на 10 выбранных клавишах рояля, если каждое звукосочетание может содержать от трех до десяти звуков?
Решение: Для каждого звукосочетания клавиши нажимаются одновременно, и с учетом комбинаторного правила сложения, получим
Задача 3. У одного мальчика 6 значков, а у другого – 5. Сколькими способами они могут обменять 2 значка одного на 2 значка другого?
Решение: Найдем сколькими способами каждый выдерет из своих значков по 2 для обмена: ; . Используя комбинаторное правило умножения получим 1015=150 способов
Задача 4. Сколькими способами можно расположить на шахматной доске две ладьи так, чтобы одна не могла взять другую? (Одна ладья может взять другую, если она находится с ней на одной горизонтали или на одной вертикали шахматной доски)
Решение: Первую ладью можно поставить на любое из 64 полей. При этом 14 полей оказываются под угрозой, значит, для второй ладьи остается любое из 64 -15 = 49 полей. Значит, общее число вариантов 6449 = 3136
Задача 5. В кабинете работают 6 мужчин и 4 женщины. Для переезда наудачу отобраны 7 человек. Найти вероятность того, что среди отобранных лиц три женщины.
Решение. Общее число возможных исходов равно числу способов, которыми можно отобрать 7 человек из 10, т.е. .
Задача 6. В урне 10 шаров: 6 белых и 4 черных. Вынули два шара. Какова вероятность, что оба шара белые?
Решение. Вынуть два шара из десяти можно следующим числом способов: . Число случаев, когда среди этих двух шаров будут два белых, равно . Искомая вероятность .
Задача 7. Бросают два игральных кубика. Найдите вероятность того, что в сумме выпадет четное число очков, не превосходящее шести.
Решение: Общее число исходов 66 = 36. Благоприятных исходов 9: (1;1),(1;3), (2;2), (3;1), (1;5), (2;4), (3;3), (4;2), (5;1). Значит, P =
Задача 8. В контрольной по математике 5 задач с выбором ответа. К каждой задаче предлагается 4 ответа, один из которых верный. За четыре верно решенные задачи ученик получает оценку 4. Какова вероятность получить 4, если случайным образом отметить верные ответы?
Решение: Так как к каждой задаче предлагается 4 варианта ответов, то общее число возможных комбинаций ответов равно 45 = 1024. Благоприятными исходами являются
. Значит, искомая вероятность P =
Задача 9. Измеряя рост семи пришедших на урок учеников, учитель физкультуры получил ряд чисел: 152, 148, 152,154, 158,148, 152.Найдите разность между модой и медианой того ряда.
Решение: Упорядочим ряд 148, 148, 152,152, 152,154, 158. Мода ряда – 152. Медиана – 152. Значит,152 – 152 =0
Задача 10. Дима в четверти получил по 10 предметам среднюю оценку 4,2.По какому количеству предметов он должен улучшить оценку на 1 балл, чтобы его средняя оценка стала 5?
Решение: Сумма набранных баллов по всем предметам S= x1+x2+x3+…+x10= 4,210=42.
Тогда сумма баллов, набранная после исправления S1= y1+y2+…+y10=510=50. Следовательно, Дима должен улучшить свой результат на S-S1=50-42=8 баллов. Значит, он должен улучшить на 1 балл по 8 предметам.