kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Конспект урока задач на смеси и сплавы(из опыта работы)

Нажмите, чтобы узнать подробности

Из опыта работы :  решения задач на смеси и сплавы

Задачи на смеси и сплавы при первом знакомстве с ними вызывают у учащихся общеобразовательных классов затруднения. Самостоятельно справиться с ними могут немногие.  Задачи на смеси и сплавы, ранее встречающиеся практически только на вступительных экзаменах в ВУЗы и олимпиадах, сейчас включены в сборник для подготовки и проведения экзамена по алгебре за курс основной школы. Эти задачи, имеющие практическое значение, являются также хорошим средством развития мышления учащихся.

Трудности при решении этих задач могут возникать на различных этапах:

составления математической модели (уравнения, системы уравнений, неравенства и

решения полученной модели;

анализа математической модели (по причине кажущейся ее неполноты:не хватает уравнения в системе и пр.).

Все сложности преодолимы при тщательном анализе задачи. Этому способствуют чертежи, схемы, таблицы и пр. Каждый учащийся сам для себя делает вывод об уровне сложности той или иной задачи и месте, где эта сложность возникает.

Основными компонентами в этих задачах являются:

  • масса раствора (смеси, сплава);
  • масса вещества;
  • доля (% содержание) вещества.

При решении большинства задач этого вида, с моей точки зрения, удобнее использовать таблицу, которая нагляднее и короче обычной записи с пояснениями. Зрительное восприятие определенного расположения величин в таблице дает дополнительную информацию, облегчающую процесс решения задачи и её проверки.

Теоретические сведения.

Пусть m г некоторого вещества растворяется в М г воды, тогда

- доля вещества в растворе;

- доля воды в растворе;

· 100 % - концентрация раствора, или процентное содержание вещества в растворе;

· 100% - процентное содержание воды в растворе;

При этом · 100 % + · 100% = 100%.

Примечание 1. Вместо воды можно брать любую жидкость – основание, в которой можно растворить то или иное вещество.

Примечание 2. С математической точки зрения растворы, смеси, сплавы не отличаются друг от друга. Поэтому доля или процентное содержание одного вещества в растворе, смеси, сплаве определяются по одному правилу

Примечание 3. Вместо весовых мер веществ и воды можно брать доли или части (mч и Мч ).

II) Знакомство учащихся с текстом задач и выделение основных компонентов в них.

Таблица для решения задач имеет следующий вид:

Наименование веществ, растворов, смесей, сплавов

% содержание вещества (доля содержания вещества)

Масса раствора (смеси, сплава)

Масса вещества

III) Решение задач.

Рассмотрим решения задач с применением таблицы.

Задача 1. В сосуд содержащий 2 кг 80 % -го водного раствора уксуса добавили 3 кг воды. Найдите концентрацию получившегося раствора уксусной кислоты.

Решение.

Наименование веществ, смесей

% содержание (доля) вещества

Масса раствора

(кг)

Масса вещества (кг)

Исходный раствор

80 % = 0,8

2

0,8·2

Вода

-

3

-

Новый раствор

х % = 0,01х

5

0,01х

Масса уксусной кислоты не изменилась, тогда получаем уравнение:

0,01х·5 = 0,8·2

0,05х = 1,6

х = 1,6:0,05

х = 32

Ответ:концентрация получившегося раствора уксусной кислоты равна 32 %.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«конспект урока задач на смеси и сплавы(из опыта работы)»

Из опыта работы : решения задач на смеси и сплавы

Задачи на смеси и сплавы при первом знакомстве с ними вызывают у учащихся общеобразовательных классов затруднения. Самостоятельно справиться с ними могут немногие. Задачи на смеси и сплавы, ранее встречающиеся практически только на вступительных экзаменах в ВУЗы и олимпиадах, сейчас включены в сборник для подготовки и проведения экзамена по алгебре за курс основной школы. Эти задачи, имеющие практическое значение, являются также хорошим средством развития мышления учащихся.

Трудности при решении этих задач могут возникать на различных этапах:

составления математической модели (уравнения, системы уравнений, неравенства и

решения полученной модели;

анализа математической модели (по причине кажущейся ее неполноты:не хватает уравнения в системе и пр.).

Все сложности преодолимы при тщательном анализе задачи. Этому способствуют чертежи, схемы, таблицы и пр. Каждый учащийся сам для себя делает вывод об уровне сложности той или иной задачи и месте, где эта сложность возникает.

Основными компонентами в этих задачах являются:

  • масса раствора (смеси, сплава);

  • масса вещества;

  • доля (% содержание) вещества.

При решении большинства задач этого вида, с моей точки зрения, удобнее использовать таблицу, которая нагляднее и короче обычной записи с пояснениями. Зрительное восприятие определенного расположения величин в таблице дает дополнительную информацию, облегчающую процесс решения задачи и её проверки.

Теоретические сведения.

Пусть m г некоторого вещества растворяется в М г воды, тогда

- доля вещества в растворе;

- доля воды в растворе;

· 100 % - концентрация раствора, или процентное содержание вещества в растворе;

· 100% - процентное содержание воды в растворе;

При этом · 100 % + · 100% = 100%.

Примечание 1. Вместо воды можно брать любую жидкость – основание, в которой можно растворить то или иное вещество.

Примечание 2. С математической точки зрения растворы, смеси, сплавы не отличаются друг от друга. Поэтому доля или процентное содержание одного вещества в растворе, смеси, сплаве определяются по одному правилу

Примечание 3. Вместо весовых мер веществ и воды можно брать доли или части (mч и Мч ).

II) Знакомство учащихся с текстом задач и выделение основных компонентов в них.

Таблица для решения задач имеет следующий вид:

Наименование веществ, растворов, смесей, сплавов

% содержание вещества (доля содержания вещества)

Масса раствора (смеси, сплава)

Масса вещества

 

 

 

 

III) Решение задач.

Рассмотрим решения задач с применением таблицы.

Задача 1. В сосуд содержащий 2 кг 80 % -го водного раствора уксуса добавили 3 кг воды. Найдите концентрацию получившегося раствора уксусной кислоты.

Решение.

Наименование веществ, смесей

% содержание (доля) вещества

Масса раствора

(кг)

Масса вещества (кг)

Исходный раствор

80 % = 0,8

2

0,8·2

Вода

-

3

-

Новый раствор

х % = 0,01х

5

0,01х

Масса уксусной кислоты не изменилась, тогда получаем уравнение:

0,01х·5 = 0,8·2

0,05х = 1,6

х = 1,6:0,05

х = 32

Ответ:концентрация получившегося раствора уксусной кислоты равна 32 %.

Очень часто в жизни приходится решать следующую задачу.

Задача 2.Сколько нужно добавить воды в сосуд, содержащий 200 г 70 % -го раствора уксусной кислоты, чтобы получить 8 % раствор уксусной кислоты?

Решение.

Наименование веществ, смесей

% содержание (доля) вещества

Масса раствора

(г)

Масса вещества (г)

Исходный раствор

70 % = 0,7

200

0,7·200

Вода

-

х

-

Новый раствор

8 % = 0,08

200 + х

0,08(200 + х)

Анализируя таблицу, составляем уравнение :

0,08(200 + х) = 0,7·200

16 + 0,08х = 140

0,08х = 124

х = 1550

Ответ :1,55 кг воды.

Задача 3. Смешали некоторое количество 12% раствора соляной кислоты с таким же количеством 20 % раствора этой же кислоты. Найти концентрацию получившейся соляной кислоты.

Решение.

Наименование веществ, смесей

% содержание (доля) вещества

Масса раствора

(кг)

Масса вещества (кг)

I раствор

12 % = 0,12

у

0,12у

II раствор

20 % = 0,2

у

0,2у

Смесь

х % = 0,01х

0,01х·2у

Анализируя таблицу, составляем уравнение :

0,12у + 0,2у = 0,01х·2у

Получили уравнение с двумя переменными, учитывая, что , имеем

0,32 = 0,02х

х = 16

Ответ :концентрация раствора 16 %.

Задача 4. Смешали 8кг 18 % раствора некоторого вещества с 12 кг 8 % раствора этого же вещества. Найдите концентрацию получившегося раствора.

Решение.

Наименование веществ, смесей

% содержание (доля) вещества

Масса раствора

(кг)

Масса вещества (кг)

I раствор

18 % = 0,18

8

0,18·8

II раствор

8 % = 0,08

12

0,08·12

Смесь

х % = 0,01х

20

0,01х·20

Уравнение для решения задачи имеет вид:

0,01х·20 = 0,18·8 + 0,08·12

0,2х = 2,4

х = 12

Ответ:концентрация раствора 12 %.



Задача 5 Смешав 40 % и 15 % растворы кислоты, добавили 3 кг чистой воды и получили 20 % раствор кислоты. Если бы вместо 3 кг воды добавили 3 кг 80 % раствора той же кислоты, то получили бы 50 %-ый раствор кислоты. Сколько килограммов 40 % -го и 15 % растворов кислоты было смешано?

Решение.

Наименование веществ, смесей

% содержание (доля) вещества

Масса раствора

(кг)

Масса вещества (кг)

I раствор

40 % = 0,4

х

0,4х

II раствор

15 % = 0,15

у

0,15у

Вода

-

3

-

Смесь I

20 % = 0,2

х + у +3

0,2(х + у +3)

Получаем уравнение:0,4х + 0,15у = 0,2(х + у +3)

Выполним вторую операцию:

I раствор

40 % = 0,4

х

0,4х

II раствор

15 % = 0,15

у

0,15у

Кислота

80 % = 0,8

3

0,8·3

Смесь II

50 % = 0,5

х + у +3

0,5(х + у +3)

Итак, 0,4х + 0,15у + 0,8·3 = 0,5(х + у +3).

Для решения задачи получаем систему уравнений:

Для решения задачи получаем систему уравнений:

Решаем систему уравнений:

Ответ:3,4 кг 40 % кислоты и 1,6 кг 15 % кислоты.

Задача 6. Имеется три сосуда. В первый сосуд налили 4 кг 70 % сахарного сиропа, а во второй – 6 кг 40 % сахарного сиропа. Если содержимое первого сосуда смешать с содержимым третьего сосуда, то получим в смеси 55 % содержание сахара, а если содержимое второго сосуда смешать с третьим, то получим 35 % содержание сахара. Найдите массу сахарного в третьем сосуде сиропа и концентрацию сахара в нем.

Решение.

Наименование веществ, смесей

% содержание (доля) вещества

Масса раствора

(кг)

Масса вещества (кг)

I сосуд

70 % = 0,7

4

0,7·4=2,8

II сосуд

40 % = 0,4

6

0,4·6 = 2,4

III сосуд

у % = 0,01у

х

0,01ху

I и III сосуды

55 % = 0,55

4+х

0,55(4+х)

в нем.

Решение.





Наименование веществ, смесей

% содержание (доля) вещества

Масса раствора

(кг)

Масса вещества (кг)

I сосуд

70 % = 0,7

4

0,7·4=2,8

II сосуд

40 % = 0,4

6

0,4·6 = 2,4

III сосуд

у % = 0,01у

х

0,01ху

I и III сосуды

55 % = 0,55

4+х

0,55(4+х)

или

2,8+0,01ху

II и III сосуды

35 % = 0,35

6+х

0,35(6+х)

или

2,4+0,01ху

Итак, получаем систему уравнений :

Решаем её:

Ответ :1,5 кг сахарного сиропа 15 % концентрации.

Задача 7. Имеются два сплава, состоящие из золота и меди. В первом сплаве отношение масс золота и меди равно 8 :3, а во втором - 12 :5. Сколько килограммов золота и меди содержится в сплаве, приготовленном из 121 кг первого сплава и 255 кг второго сплава?

Решение.



Наименование веществ, смесей

Доля вещества

Масса сплава

(кг)

Масса вещества (кг)

золото

медь

всего

Золото

Мз

медь

Мм

I сплав

8

3

11

121

·121

·121

или

121- Мз

II сплав

12

5

17

255

·255

255- Мз

III сплав

-

-

-

376

Сумма I и II сплавов

Сумма I и II сплавов

·121 = 88 (кг) – масса золота в I сплаве

·255 = 180 (кг) масса золота в II сплаве

121+255=376 (кг) – масса III сплава

88+180=268 (кг) -масса золота в III сплаве

376-268=108 (кг) масса меди в III сплаве

Ответ :268 кг золота и 108 кг меди.

Задача 8. Одна смесь содержит вещества А и В в отношении 4 :5, а другая смесь содержит те же вещества, но в отношении 6 :7. Сколько частей каждой смеси надо взять, чтобы получить третью смесь, содержащую те же вещества в отношении 5 :6





Наименование веществ, смесей

Доля вещества в смеси

Масса смеси

(кг)

Масса вещества (кг)

А

В

всего

А

В

I смесь

4

5

9

х

х

х

II смесь

6

7

13

у

у

у

III смесь

5

6

 

х+ у

х + у

х + у

По условию задачи А :В = 5 :6, тогда

В данном случае получилось одно уравнение с двумя переменными.

Решаем уравнение относительно . Получим =. Ответ : 9 частей первой смеси и 13 частей второй смеси.





Заключение.

Решение задач на “растворы, смеси и сплавы” являются хорошим накоплением опыта решения задач. В заключении очень полезно дать учащимся составить свои задачи. При этом получаются задачи и не имеющие решения, это позволяет им моделировать реальные ситуации и процессы в жизни. Такой вид работы делает мышление учащихся оперативным, воспитывает творческое отношение к тем задачам, которые ставит жизнь, учит учащихся прогнозированию.


Получите в подарок сайт учителя

Предмет: Математика

Категория: Прочее

Целевая аудитория: 11 класс.
Урок соответствует ФГОС

Скачать
конспект урока задач на смеси и сплавы(из опыта работы)

Автор: Андруконис Надежда Станиславовна

Дата: 15.02.2016

Номер свидетельства: 293642


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства