kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Исследовательская работа по математике "Аликвотные дроби." учеников 8 "в" класса Морданова Камрана и Малышева Никиты.

Нажмите, чтобы узнать подробности

Таким образом, при разработке данной темы,  мы узнали, что первыми дробями, которыми оперировали люди, были аликвотные дроби.

      Задачи с использованием аликвотных дробей составляют обширный класс  нестандартных задач.  Аликвотные дроби используются тогда, когда требуется что-то разделить на несколько частей с наименьшим количеством действий для этого.

Разложение дробей на две аликвотные дроби систематизировали в виде формулы, преобразовав которую, легко решили олимпиадные задачи по математике разных лет.

Решив проблему разложения аликвотных дробей на две аликвотные дроби, мы пришли к выводу, что разложение на три, четыре, пять и т.д. аликвотных дробей можно произвести , разложив одно из слагаемых на две дроби, следующее слагаемое еще на две аликвотные дроби и т.д.

 Таким образом, аликвотные дроби (с числителем 1) долгое время были единственными дробями, с которыми как-то умел оперировать человек, а правила действий с произвольными дробями разработаны «сравнительно недавно».

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Исследовательская работа по математике "Аликвотные дроби." учеников 8 "в" класса Морданова Камрана и Малышева Никиты. »


Муниципальное образовательное учреждение

«Средняя общеобразовательная школа ст.Архонская»







Исследовательская работа по математике

"Аликвотные дроби."
















Работу выполнили:

ученики 8 "в" класса

Морданов Камран и

Малышев Никита.

Руководитель работы:

учитель математики

Кусей Любовь Александровна.





2014г.







Цель исследования:

  • Выяснить, какое значение имеют аликвотные дроби в нашей жизни.

Задачи исследования:

  • Узнать происхождение аликвотных дробей.

  • Рассмотреть основные операции с аликвотными дробями.

  • Решать олимпиадные задачи с помощью аликвотных дробей.

  • Составлять и решать задачи практического содержания.


Основная часть.

Первые дроби, с которыми нас знакомит история, это дроби вида –  – так называемые единичные дроби, так как числитель этих дробей единица. Причиной появления этих дробей являлась необходимость разбить единицу на доли. Это нужно было для того:

1. чтобы разделить добычу после охоты, ведь, нужно было знать, сколько частей составляет целое и кому какая часть добычи станет принадлежать.

2. чтобы поделить основную меру объёма в Древнем Египте - «хекат».

Итак, дроби вида , где числитель 1, а n – натуральное число, (т.е. число, которое используется для счёта предметов), называются аликвотными дробями (от латинского aliguot- " несколько'') или единичными.

В Древнем Египте «натоящими» математики считали только аликвотные дроби. Поэтому каждую дробь стремились представить в виде суммы меньших аликвотных дробей, причём с разными знаменателями.  

Например: =,

=+,

=+.


Так, глаз «Хора» - единица для измерения ёмкостей и объемов,

представляла собой дробь , так как согласно мифам глаз Хора был выбит, а затем восстановлен на . Каждая часть глаза соответствовала определённой дроби и была представлена в виде суммы аликвотных дробей таким образом: + + + + + = .

Аликвотные дроби встречаются в древнейших, дошедших до нас математических текстах, составленных более 5000 лет тому назад, – древнеегипетских папирусах и вавилонских клинописных табличках. Они нужны были для практических целей.

Рассмотрим такую задачу: «Разделить 7 хлебов между 8 людьми»   Если разрезать каждый хлеб на 8 частей, придется провести 49 разрезов (7 хлебов по 7 надрезов в каждом хлебе). А по-египетски эта задача решалась так: = + + . Значит, каждому человеку нужно дать полхлеба, четверть хлеба и восьмушку хлеба. Придется сделать почти в три раза меньше разрезов.

Я познакомилась с различными задачами древности, которые решаются через аликвоты. Меня заинтересовал вопрос, как можно разбить на аликвоты дроби дробь, где числитель 2, а знаменатель любое четное или не чётное число, то есть , и т.д.


И так дроби вида и , можно получить по формулам:

+;

= ;

.

например,

при n=2 2/5=1/3 + 1/15

при n=5 2/11=1/6 + 1/66 и т.п.


Но, оказалось трудным разложение дроби на 4 аликвотные дроби. Скажем, число 2/43 выражается так: = .


Разложить в виде суммы двух аликвотных дробей можно по формуле: + .

Например: ;

;

.


Разложить в виде разности двух аликвотных дробей можно по формуле: - знаменателями которых являются последовательные числа равные их произведению.

Например: = = - ;

.


Приложение.

Задачи из журнала «Квант». Решение задач.

  1. Представить число 1 в виде сумм различных аликвотных дробей

А) трёх слагаемых:

1 = .

Б) четырёх слагаемых:

1 = =

.

В) пяти слагаемых:

1 = = + + .

Г) шести слагаемых:

1 = = + + = +


  1. Представьте дробь в виде аликвотных дробей.

Существует 2 способа представления дроби в виде суммы и один - в виде разности аликвотных дробей. Это, опять-таки, из-за простоты числа 2011.


3. Верно ли равенство?




Равенство верно.


4.


Равенство верно.


5.



Равенство верно.


6. Решить пример.


7.В каком году проходила олимпиада в Казани?


Чтобы узнать в каком году в Казани была проведена Универсиада нужно сумму аликвотных дробей

1/(1*2)+1/(2*3)+1/(3*4)+…+1/(2013*2014) умножить на год проведения зимних олимпийских игр в городе Сочи.

Решение :

1/(1*2)+1/(2*3)+1/(3*4)+…+1/(2013*2014)=2013/2014

2013/2014 * 2014 = 2013

Ответ: Универсиада проводилась в 2013 году.


Олимпиадные задания 2006 – 2007г.

Найди сумму

1/(10*11)+1/(11*12)+…+1/(98*99)+1/(99*100)=?

Чтобы найти решение данной задачи необходимо найти сумму

1/(1*2)+1/(2*3)+…+1/(98*99)+1/(99*100)=99/100

И вычесть из нее сумму

1/(1*2)+1/(2*3)+…+1/(8*9)+1/(9*10)=9/10

99/100-9/10=(99-90)/100=9/100=0.09


Найти сумму

½+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90=

1/(1*2)+1/(2*3)+1/(3*4)+1/(5*6)+1/(6*7)+1/(7*8)+1/(8*9)+1/(9*10) =9/10


3.Заключение.


Таким образом, при разработке данной темы, мы узнали, что первыми дробями, которыми оперировали люди, были аликвотные дроби.

Задачи с использованием аликвотных дробей составляют обширный класс нестандартных задач. Аликвотные дроби используются тогда, когда требуется что-то разделить на несколько частей с наименьшим количеством действий для этого.

Разложение дробей на две аликвотные дроби систематизировали в виде формулы, преобразовав которую, легко решили олимпиадные задачи по математике разных лет.

Решив проблему разложения аликвотных дробей на две аликвотные дроби, мы пришли к выводу, что разложение на три, четыре, пять и т.д. аликвотных дробей можно произвести , разложив одно из слагаемых на две дроби, следующее слагаемое еще на две аликвотные дроби и т.д.

Таким образом, аликвотные дроби (с числителем 1) долгое время были единственными дробями, с которыми как-то умел оперировать человек, а правила действий с произвольными дробями разработаны «сравнительно недавно».











Используемая литература:


  1. Энциклопедический словарь юного математика для среднего и старшего школьного возраста. М.: Педагогика,1989.

  2. Левитас Г. Г. Нестандартные задачи по математике.– М.: ИЛЕКСА,2007.

  3. Баженов И.И., Порошкин А.Г. и др. Задачи для школьных математических кружков. Сыктывкар, 1994.

  4. Гаврилова Т. Д. «Занимательная математика». 5-11класс. Волгоград: Учитель, 2008.

  5. Фарков А. В. Математические олимпиады в школе. 5-11класс. – М.: Айрис-пресс, 2005.

  6. Петерсон Л. Г. Математика. 5класс. – М.:Ювента, 2009.








































Получите в подарок сайт учителя

Предмет: Математика

Категория: Прочее

Целевая аудитория: 8 класс.
Урок соответствует ФГОС

Автор: Кусей Любовь Александровна

Дата: 14.01.2015

Номер свидетельства: 155328


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1490 руб.
2130 руб.
1580 руб.
2260 руб.
1450 руб.
2070 руб.
1680 руб.
2400 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства