kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Факультативное занятие "Производная функция в заданиях ЕГЭ"

Нажмите, чтобы узнать подробности

Цель -  развивать  у учащихся навыки  применения теоретических  знаний  по теме «Производная функции» для решения заданий   единого государственного экзамена.

Задачи

Образовательные: обобщить и систематизировать знания учащихся по теме «Производная функции», рассмотреть прототипы задач ЕГЭ по данной теме, предоставить обучающимся возможность проверить свои знания при самостоятельном решении заданий.

Развивающие: способствовать развитию памяти, внимания, навыков самооценки и самоконтроля; формированию основных ключевых компетенций (сравнение, сопоставление, контроль и оценивание своей деятельности, корректировка  возникших трудностей).

Воспитательные:   способствовать формированию у учащихся ответственного отношения к учению.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Факультативное занятие "Производная функция в заданиях ЕГЭ"»

Тема факультативного занятия: «Производная функция в заданиях ЕГЭ»

Цель - развивать у учащихся навыки применения теоретических знаний по теме «Производная функции» для решения заданий единого государственного экзамена.

Задачи

Образовательные: обобщить и систематизировать знания учащихся по теме «Производная функции», рассмотреть прототипы задач ЕГЭ по данной теме, предоставить обучающимся возможность проверить свои знания при самостоятельном решении заданий.

Развивающие: способствовать развитию памяти, внимания, навыков самооценки и самоконтроля; формированию основных ключевых компетенций (сравнение, сопоставление, контроль и оценивание своей деятельности, корректировка возникших трудностей).

Воспитательные: способствовать формированию у учащихся ответственного отношения к учению.

Методы обучения: словесный, наглядный, практический.

Формы работы: индивидуальная, фронтальная, в парах.

Оборудование и материалы для урока: проектор, экран, презентация, , сайты сети Интернет.

Структура урока:  актуализация субъектного опыта (мотивация личностные смыслы, опорные знания и умения, ценностные отношения) рефлексия. анализ закрепления умений организация закрепления учебного материала  проверка правильности понимания учебного материала  организация восприятия, осмысления и запоминания нового учебного материала как единого процесса.

Ход урока

1.      Организационный момент .

Всем известно высказывание «Мал золотник да дорог». Одним из таких «золотников» в математике является производная. Производная применяется при решении многих практических задач математики, физики, химии, экономики и других дисциплин. Она позволяет решать задачи просто, красиво, интересно.

Тема нашего занятия «Производная функции в заданиях ЕГЭ». Тема «Производная» представлена в заданиях базового и профильного уровня единого государственного экзамена. Цель урока ребята поставьте сами.

2.       Мотивационный блок.

Учитель:    Ребята, я не сомневаюсь в том, что вы знаете, какой непростой этап переживает экономика России и всего мира. Связано это в первую очередь с тем, что экономисты ведущих мировых стран неверно рассчитали риски реализуемых проектов. Многие предприятия из-за кризиса оказались под угрозой закрытия, а значит, работники этих предприятий окажутся уволенными. Чтобы нормализовать деятельность предприятия, терпящего кризис,  и избежать освобождения людей,  на предприятие его владельцем приглашается антикризисный менеджер или даже целая команда антикризисных менеджеров. Задача этой команды  найти пути решения проблемы – выведения предприятия из кризиса. Работа антикризисных менеджеров считается хорошо выполненной, если найден путь решения поставленной задачи. Антикризисный менеджер должен в первую очередь уметь решать стоящие перед ним задачи, верно просчитывая  каждый свой шаг. Мы тоже сегодня с вами, решать задания из базового и профильного уровня. Учитель предлагает ученикам  перечислить правила, которые они  применяли при выполнении заданий. (слайд 2) Производная – одно из фундаментальных понятий математики, характеризующее скорость изменения функции в данной точке. Производная в математике показывает числовое выражение степени изменений величины, находящейся в одной и тоже точке, под влиянием различных условий. Формула производной встречается нам ещё в 15 веке. Великий итальянский математик Тартальи, рассматривая и развивая вопрос - насколько зависит дальность полёта снаряда от наклона орудия - применяет её в своих трудах. Понятие производной возникло в XXVII веке в связи с необходимостью решения ряда задач из физики, механики и математики, но в первую очередь следующих двух: определение скорости прямолинейного движения и построения касательной к прямой. Независимо друг от друга Исаак Ньютон и Готфрид Лейбниц разработали теорию дифференциального исчисления и создали аппарат, которым мы и пользуемся в настоящее время. Исаак Ньютон в основном опирался на физическое представление о мгновенной скорости движения, считая его очевидным и сводя к нему другие случаи производной, а Готфрид Лейбниц использовал понятие бесконечно малой.

3. Актуализация опорных знаний.(слайд 3,4)

В чем заключается геометрический смысл производной функции?

Какой знак имеет производная на интервале, если функция возрастает?

Ответ: Если функция возрастает, то f ′(x)0 на этом интервале.

Какой знак имеет производная на интервале, если функция убывает?

Ответ: если функция убывает, то f ′(x)

В чем состоит физический (механический) смысл производной функции?

Ответ: Если тело движется по прямой согласно закону s(t), то формулы для нахождения скорости и ускорения тела в момент времени t: v (t)= s‘(t) и а(t) = v’(t).

Открыл механический смысл производной И. Ньютона.

Чтобы эффективно использовать производную при решении конкретных задач, необходимо, как таблицу умножения, знать таблицу производных элементарных функций и правила дифференцирования.

Убедимся в том, что вы эту таблицу знаете.

Учитель просит сформулировать правила нахождения производной.

Учащиеся называют основные правила нахождения производных.

Должны прозвучать ответы:

1. Производная суммы (u+v)'= u' + v';
2. О постоянном множителе (Cu)'=Cu';
3. Производная произведения (uv)'=u'v+uv';
4. Производная дроби (u/v)'=(u'v-uv')/v2;
5. Производная сложной функции  

Учитель просит вспомнить таблицу производных элементарных функций.

Переходим к следующему этапу урока, который покажет, как вы владеете этим эффективным и универсальным инструментом – производной.

4. Решение заданий на вычисление производной.

тетрадях ответ. Затем на экран выводятся правильные ответы.

слайды с чертежами и заданиями к ним. Учащиеся фиксируют в

тетрадях ответ. Затем на экран выводятся правильные ответы.

Учащиеся фиксируют решения в тетради, затем ответы выводятся на экран.

Ребята делятся на 2 группы: Практики и Эксперты. Практики решают задания, а Эксперты контролируют процесс (при этом решая тоже задания чтобы проверить).(слайд 5-19)

Подготовленные слайды требуют теоретических знаний по теме урока. Цель составленных слайдов состоит в том, чтобы учащиеся смогли совершенствовать и практически применять знания.

В ходе нахождения наибольшего и наименьшего значения функций, будет предложен второй способ нахождения этих величин.(слайд 17-19).

Далее решение заданий из открытого банка ЕГЭ.

5.Рефлексия.

Задание на применение производной в материалах ЕГЭ требуют теоретических знаний и практического их применения. Итак, вы повторили теоретические вопросы о производной функции, применили свои знания при решении практических задач.

- Мне приятно было с вами работать, и надеюсь, что знания, полученные на уроках математики, вы сможете успешно применить не только при сдаче ЕГЭ, но и в дальнейшей своей жизни.




Получите в подарок сайт учителя

Предмет: Математика

Категория: Прочее

Целевая аудитория: 11 класс.
Урок соответствует ФГОС

Скачать
Факультативное занятие "Производная функция в заданиях ЕГЭ"

Автор: Симонова Валерия Константиновна

Дата: 27.11.2018

Номер свидетельства: 487932


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1280 руб.
2130 руб.
1500 руб.
2500 руб.
1580 руб.
2640 руб.
1440 руб.
2400 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства