Sum and Difference Formulas in Trigonometry
Introduction
The students will learn
- trigonometric ratios of the sum or difference of two arcs,
- conversion and inverse conversion formulas .
Trigonometric Ratios of The Sum or Difference of Two Arcs
Theorem 1.4
Theorem 1.5
Theorem 1.6
Theorem 1.7
Theorem 1.4
If a and b are two real numbers, then
Proof-1
1. cos(a+b) = cos a . cos b - sin a . sin b
Example-1
Proof-2
2. cos(a-b) = cos a . cos b + sin a . sin b
Example-2
Proo f -3
3. sin(a+b) = sin a . cos b + cos a . sin b
Example-3
Proof-4
4. sin(a-b) = sin a . cos b - cos a . sin b
Example-4
BACK
Theorem 1.5
Proof-1 cos(a+b) = cos a . cos b - sin a . sin b
Full Screen
Since the lenghts of arc AP and AP’ are equal then AR = P’Q .
If is the distance between two points (x 1 ,y 1 ) and (x 2 ,y 2 ),
then the distance formula will be as follow s then
AR = P’Q AR 2 = P’Q 2
(cos(a+b)-1) 2 + (sin(a+b)- 0) 2 = (cos a – cos b) 2 + (sin b + sin a) 2
- (cos(a+b)-1) 2 + (sin(a+b)- 0) 2 = (cos a – cos b) 2 + (sin b + sin a) 2
cos 2 (a+b) – 2cos(a+b) + 1 + sin 2 (a+b) = cos 2 a –2cosa.cosb + cos 2 b + sin 2 b + 2sina. sinb + sin 2 a
2 – 2cos(a+b) = 2 – 2cosa.cosb + 2sinb.sina
cos(a+b) = cosa. cosb – sina. sinb
BACK
Example-1
Full screen
BACK
Example-1:
cos 75 o = ?
Solution-1
Solution-1:
cos 75º = cos ( 45º + 30º )
= cos 45º.cos 30º - sin 45º. sin 30º
=
=
BACK
Proof-2 cos(a-b) = cos a . cos b + sin a . sin b
Since cos(a+b) = cosa . cosb – sina . s inb is valid far all real numbers a and b,
t hen cos(a+(-b)) = cosa . cos(-b) – sina . sin(-b)
cos(a-b) = cosa . cosb + sina . sinb
BACK
Example-2
Example-2:
cos 15 o = ?
Solution-2
Solution-2:
cos 1 5 º = cos ( 45 º - 30 º )
= cos 45 º .cos 30 º + sin 45 º . sin 30 º
=
=
BACK
Proof-3 sin(a+b) = sin a . cos b + cos a . sin b
We can write sine in terms of cosine by using reduction formulas. Hence,
sin(a+b) = sin a . cos b + cos a. sin b
BACK
Example-3
Example-3:
sin 105 o = ?
Solution-3
Solution-3:
sin 10 5º = cos ( 60 º + 45 º )
= sin 60 º.cos 45 º + cos 60 º. sin 45 º
=
=
BACK
Proof-4 sin(a+b) = sin a . cos b - cos a . sin b
Since the equality sin(a+b) = sin a . cos b + cos a. sin b is valid for all real numbers a and b, by writing –b instead of b, we get
sin(a+ (-b) ) = sin a . cos (- b ) + cos a. s in (- b ) then
sin(a+b) = sin a . cos b - cos a . sin b
BACK
Example-4
Example-4:
sin 15 o = ?
Solution-4
Solution-4:
sin 1 5º = cos ( 60 º - 45 º )
= sin 60 º.cos 45 º - cos 60 º. sin 45 º
=
=
BACK
Theorem 1.5
1. If a, b and a+b real numbers different from /2+k , k Z, then
Proof-5
Example-5
2. If a, b and a-b real numbers different from /2+k , k Z, then
Proof-6
Example- 6
BACK
Theorem 1.6
Proof-5
BACK
Example-5
Example-5:
Let and be two acute angles. If sin = 3/5 and cos = 5/13, then find tan( + ).
Solution-5
Solution-5:
BACK
Proof-6
2. If we write –b instead of b in the previous equality then,
BACK
Example-6
Example-6:
In triangle ABC, if m(CAD)= , then find tan .
Solution-6
Solution-6:
tan = tan (a – b)
BACK
Theorem 1.6
1. If a, b and a+b real numbers different from k , k Z, then
Proof-7
Example-7
2. If a, b and a-b real numbers different from k , k Z, then
Proof-8
Example-8
BACK
Theorem 1.7
Proof-7
BACK
Example-7
Example-7:
In the adjoining figure AB = 4, BC = 3, AD = 12 and m(ABC)=90º, m(CAD)=90º, m(CED)=90º. Find cot , if m(DCE) = .
Solution-7
Solution-7:
AC = 5 and CD = 13.
Put m(ACB) = a and m(ACD) = b then,
= 180 - (a + b)
cot = cot (180 - (a + b))
= - cot (a + b)
BACK
Proof-8
2. If we write –b instead of b in the previous equality then,
BACK
Example-8
Example-8:
Adjoining figure consists of three equivalent squares. Find cot , if m(CAE)=
Solution-8
Solution-8:
Let x be the lenght of the sides of each equivalent square.
If m(BAC) = 45º, and m(BAE) = then,
= - 45
cot = cot ( - 45 )
=
=
BACK
Theorem 1.7
1. If a, b and a+b real numbers different from k , k Z, then
Proof-7
Example-7
2. If a, b and a-b real numbers different from k , k Z, then
Proof-8
Example-8
BACK