Я учитель математики и информатики первой категории. Я горжусь своей профессией. Окончила педагогический институт имени Ш.Уалиханова в городе Кокшетау 1995 году. Я за свой 19 лет стажа накопила много опыта благодаря своим наставникам, учителям Ауезовской СШ Уалихановского района Северо-Казахстанской области Нугумановой Мариям Шаяхметовны и Ауталипова Мухтара Ауталиповича. Я работаю в данной Тургайской СШ с 2014 года. Я проводила районный семинар естественного математического цикла, районный мастер-класс. Участвовала на областном семинаре, на областной конференции Последние курсы по повышению квалификации в Петропавловском ИПК феврале 2014 г, в Астане в октябре 2014.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«презентация урока " Келтіру формулалары" »
11 .02. 2015 жыл
БЕКІТУ САҒАТЫ
Біліктілік: Оқушыларға сүйір бұрыштың тригонометриялық функциясының әрбір бұрышындағы синустың, косинустың, тангенстің, котангенстің арнайы формулалары мен кестені қолданудың қыр сырын ұғындырып тригонометриялық өрнектерді түрлендіруде және есептерді шығару кезінде қолдануды үйрету;
оң жағының таңбасы сәйкес ширектегі келтірілген функцияның таңбасымен бірдей жазылады
Бұдан шығады.
Жоғарыдағы формулаларды пайдаланып, tg α ,ctg α - н ің келтіру формуласын шығаруға болады.
Есте сақта!!!
Егер келтірілген тригонометриялық функцияның аргументі (бұрышы)π±α(180 ±α), 2π±α(360 ±α) түрінде болса, онда оның аты өзгермейді.
Егер келтірілген тригонометриялық функцияның аргументі (бұрышы)π/2 ±α(90 ±α), 3π/2 ±α(270 ±α) түрінде болса, онда синус косинусқа, косинус синусқа, тангенс котангенске, котангенс тангенске өзгереді;
Келтіру формуласының оң жағының таңбасы сәйкес ширектегі келтірілген функцияныі таңбасымен бірдей жазылады.
х
х
sin x
Cos α
cosx
cos α
-sin α
tg x
sin α
-ctg α
ctg x
-sin α
sin α
-cos α
ctg α
-tg α
tg α
tg α
-cos α
-cos α
ctg α
sin α
-tg α
-cos α
sin α
-sin α
-ctg α
-ctg α
-tg α
cos α
ctg α
-sin α
tg α
cos α
tg α
-tg α
ctg α
-ctg α
х
sin x
Cos α
cosx
cos α
-sin α
tg x
sin α
-ctg α
ctg x
-sin α
sin α
-cos α
ctg α
-tg α
tg α
tg α
-cos α
-cos α
ctg α
sin α
-tg α
-cos α
sin α
-sin α
-ctg α
-ctg α
-tg α
cos α
ctg α
-sin α
tg α
cos α
tg α
-tg α
ctg α
-ctg α
1. Сәйкестендіру тесті(өрнекті ықшамда)
tg(π-α)
cosα
ctg( π + α )
tg α
sin(360- α )
- tg α
cos(360- α )
ctg α
ctg(360- α )
- sin α
tg(360+ α )
- ctg α
1. Сәйкестендіру тесті(өрнекті ықшамда)
tg(π-α)
cosα
ctg( π + α )
tg α
sin(360- α )
- tg α
cos(360- α )
ctg α
ctg(360- α )
- sin α
tg(360+ α )
- ctg α
Оқулықпен жұмыс №334
1. 2 .
а)75 ә) 150 б)200 бұрыштарының барлық тригонометриялық функциясын аргументі 45- тан аспайтын функциямен ауыстырыңдар.