Просмотр содержимого документа
«Кыскача көбөйтүүнүн формулалары»
Кыскача
Токтогул атындагы №1 мектеп-гимназиясы
көбөйтүүнүн
формулалары
7-класс
Математика мугалими: Айбекова Акжибек Айбековна
23.11.2016-ж.
Сабактын башталышында маанайыңар кандай?
2
Мага баары бир
1
3
1
Баары жакшы, мен даярмын!
Мен ойлонуп жатам, бугүн тапшырмаларды аткара аламбы?
Кайталоо
1. Даражанын негизги касиеттерин айтып бергиле? 2. Сандын нөлүнчү даражасы эмнеге барабар?
1 . (х 2 ) 5 = 4. х 3 х 6 = 5. (х 3 ) 20 х 8 = 6. а а 35 а 20 = 7. (у 2 ) 5 ) 12 =
х 10
х 9
х 68
а 56
у 120
(х+8)*6=
(у+12)(у+10)=
Квадраттын аянты - (a + b) 2
a b
a
a
b
b
a
b
из 56
Чоң квадраттын аянты кичинекей аянттардын суммасына барабар.
S1+S2+S3+S4
b
a
a
S2=ab
S1 = a 2
a
b
S4=b 2
S3=ab
b
a
b
из 56
Аянттардын суммасы S1+S2+S3+S4
+
+
+
S2
S3
S1
S4
+
+
+
b2
ab
ab
а2
а2+ 2ab + b2
из 56
Бир эле аянтты эки түрдөгү формула менен жазсак болот экен...
S =(a+b)2
S =a2+ 2ab + b2
из 56
Ушундай формула чыкты...
(a+b)2= a2+2ab + b2
из 56
Биз алган теңдештик
(a+b)2= a2+2ab + b2
ЭКИ МҮЧӨНҮН СУММАСЫНЫН КВАДРАТЫНЫН ФОРМУЛАСЫ
деп аталат.
из 56
(a+b)2= a2+2ab + b2
Эки мүчөнүн суммасынын квадраты биринчи мүчөнүн квадратына плюс биринчи менен экинчи мүчөнүн эки эселенген көбөйтүндүсү плюс экинчи мүчөнүн квадратына барабар.
из 56
ЭКИ МҮЧӨНҮН АЙЫРМАСЫНЫН
КВАДРАТЫ
из 56
Айырманы квадратка көтөрөбүз
(a – b) =
= (a – b)(a – b) = …
Аягына чыгаргыла
2
из 56
Алынган теңдештик
(a – b)2= a2– 2ab + b2
Эки мүчөнүн айырмасынын квадратынын формуласы деп аталат
из 56
(a-b)2= a2- 2ab + b2
Эки мүчөнүн айырмасынын квадраты биринчи мүчөнүн квадратынан минус биринчи менен экинчи мүчөнүн эки эселенген көбөйтүндүсү плюс экинчи мүчөнүн квадратына барабар.
из 56
Эки мүчөнүн суммасы менен айырмасын көбөйтөбүз
(a + b)(a – b) = …
Аягына чыгаргыла
из 56
(a + b)(a - b) = a2– b2
Бул теңдештик ар кандай эки туюнтманын суммасын алардын айырмасына көбөйтүүнү кыскача аткарууга жардам берет.
из 56
Алынган теңдештик
a2– b2= (a + b)(a - b)
Эки мүчөнүн квадраттарынын айырмасы деп аталат
из 56
a2– b2= (a + b)(a - b)
Эки мүчөнүн квадраттарынын айырмасы ушул мүчөлөрдүн суммасы менен айырмасынын көбөйтүндүсүнө барабар
из 56
Формуланы колдонуп чыгаралы
(7n + 4m)2=
= (7n)2+ 27n4m + (4m)2=
= 49n2+ 56nm + 16m2
из 56
Эки мүчөнүн айырмасынын квадраты формуласына мисалдар