Рабочая программа по алгебре 7-9 по учебнику Макарычева в соответствии с ФКГОС 2004
Рабочая программа по алгебре 7-9 по учебнику Макарычева в соответствии с ФКГОС 2004
Данная рабочая программа по алгебре 7-9 классы для УМК Макарычева и др. составлена в соответствии с требованиями федерального компонента государственного образовательного стандарта 2004.Материал, включённый в РП соответствует пунктам и требованиям ФКГОС, может использоваться учителями, работающими в 7-9 классах.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Рабочая программа по алгебре 7-9 по учебнику Макарычева в соответствии с ФКГОС 2004 »
Щербиновский район село Николаевка
муниципальное бюджетное общеобразовательное учреждение
средняя общеобразовательная школа №8
муниципального образования Щербиновский район село Николаевка
УТВЕРЖДЕНО
решением педагогического совета
от 28 августа 2015 года протокол № 1
Председатель __________ Л.Л.Кудрявец
РАБОЧАЯ ПРОГРАММА
по алгебре_______________________________________
Уровень образования (класс) основное общее образование, 7- 9 классы
Количество часов 306
Учитель ____Олейник Анна Николаевна_______________________________
Программа разработана на основе программыобщеобразовательных учреждений «Алгебра 7-9 классы», авторы Ю.Н.Макарычев и др., Москва, «Просвещение», 2009 год
СОГЛАСОВАНО СОГЛАСОВАНО
Протокол заседания
методического объединения Заместитель директора по УВР
учителей математики СОШ №8 _______________ Шапарь Э.Н.
от 25.08.2015 года № 1 27.08.2015 года
_____________ Олейник А.Н.
1.Пояснительная записка
Рабочая программа по алгебре для 7-9 классов составлена в соответствии с требованиями федерального компонента государственного образовательного стандарта основного общего образования по математике. Данная рабочая программа ориентирована на учащихся 7-9 классов и реализуется на основе следующих документов:
Авторской программы Ю. Н. Макарычева, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова,
Программы общеобразовательных учреждений «Алгебра. 7-9 классы» / Сост. Т. А. Бурмистрова, М. «Просвещение» 2009 г.
Методических рекомендаций по математике 2015-2016.
Цель программы:
овладениесистемой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
Основные развивающие и воспитательные цели:
Развитие:
Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
Математической речи;
Сенсорной сферы; двигательной моторики;
Внимания; памяти;
Навыков само и взаимопроверки.
Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.
Воспитание:
Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
Волевых качеств;
Коммуникабельности;
Ответственности.
литературу, современные информационные технологии.
В рамках указанных содержательных линий решаются следующие задачи:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную
2. Общая характеристика учебного предмета.
В курсе алгебры можно выделить следующие основные содержательные линии: арифметика; алгебра; функции; вероятность и статистика. Наряду с этим в содержание включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализацией целей обще интеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия — «Логика и множества» — служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая — «Математика в историческом развитии» — способствует созданию общекультурного, гуманитарного фона изучения курса.
Содержание линии «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе.
Содержание линии «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разделов математики, смежных предметов и окружающей реальности. Язык алгебры подчёркивает значение математики как языка для построения математических моделей процессов и явлений реального мира.
Развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений также являются задачами изучения алгебры. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений.
Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.
Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности — умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.
3.Описание места учебного предмета в учебном плане.
Федеральный базисный учебный план на изучение алгебры в 7-9 классах основной школы отводит 3 часа в неделю в течение каждого года обучения, всего 315 часов (продолжительность учебного года 35 учебных недель).
В учебном плане основного общего образования МБОУ СОШ №8 с. Николаевка на изучение алгебры в 7-9 классах отводится по 3 часов в неделю в течение каждого года обучения, всего 306 часов (продолжительность учебного года 34 учебных недель).
В настоящей рабочей программе изменено соотношение часов на изучение тем, добавлены темы элементов статистики (подробнее расписано в Содержании тем учебного курса).
4.Содержание учебного курса.
7 класс:
ГЛАВА 1. Выражения, тождества, уравнения (22 часа)
Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики.
Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.
Нахождение значений числовых и буквенных выражений даёт возможность повторить с обучающимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.
В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки ≥и ≤, дается понятие о двойных неравенствах.
При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.
Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия обучающимися алгоритмов решения уравнений, вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах=bпри различных значениях а и b. Продолжается работа по формированию у обучающихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.
Изучение темы завершается ознакомлением обучающихся с простейшими статистическими характеристиками: средним арифметическим, модой, медианой, размахом. Учащиеся должны уметь пользовать эти характеристики для анализа ряда данных в несложных ситуациях.
Глава 2. Функции (13 часов)
Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и её график.
Данная тема является начальным этапом в систематической функциональной подготовке обучающихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у обучающихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу. Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у=кх, где к0, как зависит от значений к и b взаимное расположение графиков двух функций вида у=кх+b.
Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.
Глава 3. Степень с натуральным показателем (15 часов)
Степень с натуральным показателем и ее свойства. Одночлен. Функции у=х2, у=х3 и их графики.
В данной теме дается определение степени с натуральным показателем. В курсе математики 6 класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора; Рассматриваются свойства степени с натуральным показателем: На примере доказательства свойств аm ·аn = аm+n; аm :аn = аm-n, где m n; (аm)n = аm·n; (ab)m = ambmучащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений содержащих степени, особое внимание следует обратить на порядок действий.
Рассмотрение функций у=х2, у=х3позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание обучающихся на особенности графика функции у=х2:график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.
Умение строить графики функций у=х2 и у=х3 используется для ознакомления обучающихся с графическим способом решения уравнений.
Глава 4. Многочлены (15 часов)
Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.
Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.
Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами — сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.
Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.
В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.
Глава 5.Формулы сокращенного умножения (18 часов)
Формулы (а - b )(а + b ) = а2 - b 2, (а ± b)2 = а2± 2а b + b2, (а ± b)3 = а3 ± За2 b + За b2 ± b3, (а ± b) (а2 а b + b2)= а3 ± b3. Применение формул сокращённого умножения в преобразованиях выражений.
В данной теме продолжается работа по формированию у обучающихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b)(а + b) = а2 - b 2, (а ± b)2 = а2± 2а b + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево». Наряду с указанными рассматриваются также формулы (а ± b)3 = а3 ± За2 b + За b2 ± b3, (а ± b) (а2 а b + b2)= а3 ± b3. Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.
В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.
Глава 6.Системы линейных уравнений (15 часов)
Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.
Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы, и рассматриваются системы линейных уравнений.
Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.
Формируется умение строить график уравнения ах + bу=с, где а≠0 или b≠0, при различных значениях а, b, с. Введение графических образов даёт возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными. Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.
Глава 7. Повторение (4 часа)
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 7 класса.
Алгебра 8 класс:
Глава 1. Рациональные дроби (23 часа)
Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция у = и её график. Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с обучающимися преобразования целых выражений.
Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.
Глава 2. Квадратные корни (19 часов)
Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция у = , её свойства и график.
В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные обучающимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.
При введении понятия корня полезно ознакомить обучающихся с нахождением корней с помощью калькулятора.
Глава 3. Квадратные уравнения (21 час)
Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.
В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида.
Основное внимание следует уделить решению уравнений вида ах2 + bх + с = 0, где, а 0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.
Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.
Глава 4. Неравенства (20 часов)
Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.
Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ.
В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление обучающихся с понятиями пересечения и объединения множеств.
При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах b, ах b, остановившись специально на случае, когда, а
В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.
Глава 5. Степень с целым показателем. Элементы статистики (11 часов)
Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований.
Цель: выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.
В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.
Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Обучающимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные обучающимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счет введения таких понятий, как полигон и гистограмма.
Глава 6. Повторение (8 часов)
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 8 класса.
Алгебра 9 класс:
Глава 1. Вводное повторении (3 часа)
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 8 класса.
Глава 2.Свойства функции. Квадратичная функция (22 часа)
Функция. Свойства функции. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция y = ax2+ bx + c, ее свойства и график. Степенная функция.
Цель – выработать умение строить график квадратичной функции и применять графические представления для решения неравенств второй степени с одной переменной.
Глава 3.Уравнения и неравенства с одной переменной (14 часов)
Целые уравнения. Дробные рациональные уравнения. Неравенства второй степени с одной переменной. Метод интервалов.
Глава 4.Уравнения и неравенства с двумя переменными (17 часов)
Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.
Цель – выработать умение решать простейшие системы, содержащие уравнения второй степени с двумя переменными, и решать текстовые задачи с помощью составления таких систем.
Глава 5.Прогрессии (15 часов)
Арифметическая и геометрическая прогрессии. Формула – го члена и сумма первых членов прогрессии. Бесконечно убывающая геометрическая прогрессия.
Цель – дать понятие об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.
Глава 6.Элементы комбинаторики и теории вероятностей (13 часов)
Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.
Цель - дать формулы числа перестановок, размещений, сочетаний и научить пользоваться ими при вычислении вероятностей.
Глава 7.Повторение. Решение задач (18 часов)
Систематизация и закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 7 -9 классов).
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 7-9 классов.
Резерв времени в примерной программе Ю. Н. Макарычева, Н. Г. Миндюка, К. И. Нешкова, С. Б. Суворовой не предусмотрен.
Перечень контрольных работ:
Класс
Тематика контрольных работ
7
Контрольная работа № 1 по теме «Выражения. Преобразование выражений».
Контрольная работа № 2 по теме «Уравнения с одной переменной».
Контрольная работа № 3 по теме «Функции».
Контрольная работа № 4 по теме «Степень с натуральным показателем».
Контрольная работа № 5 по теме «Сумма и разность многочленов».
Контрольная работа № 6 по теме «Произведение многочленов».
Контрольная работа № 7 по теме «Формулы сокращённого умножения».
Контрольная работа № 8 по теме «Преобразование целых выражений».
Контрольная работа № 9 по теме «Системы линейных уравнений».
Итоговая контрольная работа за год.
8
Контрольная работа №1 по теме «Рациональные дроби. Сумма и разность дробей».
Контрольная работа №2 по теме «Произведение и частное дробей».
Контрольная работа №3по теме «Арифметический квадратный корень».
Контрольная работа №4 по теме «Применение свойств квадратного корня».
Контрольная работа №5 по теме «Квадратное уравнение и его корни».
Контрольная работа №6 по теме «Дробные рациональные уравнения».
Контрольная работа №7 по теме «Числовые неравенства и их свойства».
Контрольная работа №8 по теме «Неравенства с одной переменной и их системы».
Контрольная работа №9 по теме «Степень с целым показателем и её свойства».
Итоговый зачёт.
Итоговая контрольная работа за год.
9
Контрольная работа №1 по теме «Функции. Квадратный трёхчлен».
Контрольная работа №2 по теме «Квадратичная функция».
Контрольная работа №3по теме «Уравнения и неравенства с одной переменной».
Контрольная работа №4 по теме «Уравнения и неравенства с двумя переменными».
Контрольная работа №5 по теме «Арифметическая прогрессия».
Контрольная работа №6 по теме «Геометрическая прогрессия».
Контрольная работа №7 по теме «Элементы комбинаторики и теории вероятностей».
Итоговая контрольная работа за год.
5. Тематическое планирование.
№ п/п
Название раздела
Кол-во часов
Темы раздела
7 класс
1
Выражения, тождества, уравнения
22
«Преобразование выражений. Тождества» (12 ч).
«Уравнения с одной переменной» (10 ч).
2
Функции
13
3
Степень с натуральным показателем
15
«Степень с натуральным показателем» (8 ч).
«Одночлены» (7 ч).
4
Многочлены
15
«Сумма и разность многочленов» (8 ч).
«Произведение многочленов» (7 ч).
5
Формулы сокращенного умножения
18
«Формулы сокращённого умножения» (10 ч).
«Преобразование целых выражений» (8 ч).
6
Системы линейных уравнений
15
«Линейные уравнения с двумя переменными и их системы» (6 ч).
«Решение систем линейных уравнений» (9 ч).
7
Повторение
4
8 класс
8
Рациональные дроби
23
«Рациональные дроби и их свойства» ( 5 ч).
«Сумма и разность дробей» (7 ч).
«Произведение и частное дробей» (11 ч).
9
Квадратные корни
19
«Арифметический квадратный корень» (11 ч).
«Применение свойств квадратного корня» (8 ч).
10
Квадратные уравнения
21
«Квадратное уравнение и его корни» (11 ч).
«Дробные рациональные уравнения» (10 ч).
11
Неравенства
20
«Числовые неравенства и их свойства» (9 ч).
«Неравенства с одной переменной и их системы» (11 ч).
12
Степень с целым показателем
11
13
Повторение
8
9 класс
14
Вводное повторение
3
15
Свойства функций; квадратичная функция
22
«Свойства функций» (10 ч).
«Квадратичная функция» (12 ч).
16
Уравнения и неравенства с одной переменной
14
17
Уравнения и неравенства с двумя переменными
17
«Уравнения с двумя переменными и их системы» (11 ч).
«Неравенства с двумя переменными и их системы» (6 ч).
18
Прогрессии
15
«Арифметическая прогрессия» (8 ч).
«Геометрическая прогрессия» (7 ч).
19
Элементы комбинаторики и теории вероятностей
13
20
Повторение.Решение задач
18
«Свойства функций. Квадратичная функция» (3 ч).
«Уравнения и неравенства с одной переменной» (3 ч).
«Уравнения и неравенства с двумя переменными» (3 ч).
«Прогрессии» (3 ч).
«Элементы комбинаторики и теории вероятностей» (2 ч).
«Итоговая контрольная работа за год» (4 ч).
6. Описание материально-технического обеспечения образовательной деятельности:
- печатные пособия
Алгебра. Учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова. - М. : Просвещение, 2010.
Алгебра. Учебник для 8 класса общеобразовательных учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова. - М. : Просвещение, 2010.
Алгебра. Учебник для 9 класса общеобразовательных учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова. - М. : Просвещение, 2010.
Алгебра. Дидактические материалы. 7 класс/ Л. И. Звавич, Л. В. Кузнецова, С. Б. Суворова. – М. : Просвещение, 2010.
Алгебра. Учебник для 8 класса общеобразовательных учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешкова, C. Б. Суворова. - М. : Просвещение, 2010.
Алгебра. Дидактические материалы. 8 класс / В. И. Жохов, Ю. Н. Макарычев, Н. Г. Миндюк. –М. : - Просвещение, 2012
Алгебра. Учебник для 9 класса общеобразовательных учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешкова, C. Б. Суворова. - М. : Просвещение, 2010.
Алгебра. Дидактические материалы. 9 класс / Ю. Н. Макарычев, Н. Г. Миндю, Л. Б. Крайнева. –М. : - Просвещение, 2012.
Дидактические материалы по алгебре 7 класс. / Ю.Н. Макарычев, Н.Г. Миндюк, Л.М. Короткова. М.: Просвещение, 2012 г.
Дидактические материалы по алгебре 8 класс. / Ю.Н. Макарычев, Н.Г. Миндюк, Л.М. Короткова.М.: Просвещение, 2012 г.
«Алгебра. Тематические тесты. 8 класс. Промежуточная аттестация». Ф. Ф. Лысенко, С. Ю. Кулабухова: Легион-М, Ростов-на-Дону, 2011г.
Планируемые результаты изучения учебного предмета, курса.
В результате изучения математики ученик должен
знать/понимать
существо понятия математического доказательства; приводить примеры доказательств;
существо понятия алгоритма; приводить примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.
Алгебра
уметь
-составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
-выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
-применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
-решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
-решать линейные и квадратные неравенства с одной переменной и их системы,
-решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
-изображать числа точками на координатной прямой;
-определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
-распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
-находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
-определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
-описывать свойства изученных функций, строить их графики;
использовать приобретенные знания и умения в практической деятельности и повседневной жизнидля:
-выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;
-моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
-описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций;
-интерпретации графиков реальных зависимостей между величинами.
Элементы логики, комбинаторики, статистики и теории вероятностей
уметь
-проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
-извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
-решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
-вычислять средние значения результатов измерений;
-находить частоту события, используя собственные наблюдения и готовые статистические данные;
-находить вероятности случайных событий в простейших случаях;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
-выстраивания аргументации при доказательстве и в диалоге;
-анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
-решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
-решения учебных и практических задач, требующих систематического перебора вариантов;
-сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
-понимания статистических утверждений.
Требования к уровню выставления оценки
Оценка устного ответа
- отметка «5» ставится, если учащийся полностью усвоил материал, может изложить его своими словами, самостоятельно подтверждает ответ конкретными примерами, правильно и обстоятельно отвечает на дополнительные вопросы учителя;
- отметка «4» ставится, если учащийся в основном усвоил учебный материал, допускает незначительные ошибки в его изложении, подтверждает ответ конкретными примерами, правильно отвечает на дополнительные вопросы;
- отметка «3» ставится, если учащийся не усвоил существенную часть учебного материала, допускает значительные ошибки в его изложении своими словами, затрудняется подтвердить ответ конкретными примерами, слабо отвечает на дополнительные вопросы учителя;
- отметка «2» ставится, если учащийся не усвоил весь учебный материал, не может ответить на все наводящие вопросы;
Оценка решению задач
- отметка «5» ставится, если оформление условия и решения задачи выполнено самостоятельно правильно, аккуратно и рационально, а также задача представлена в заданный срок в полном объёме (при выполнении контрольных, самостоятельных, зачетных работ), задача выполнена с учетом установленных требований;
- отметка «4» ставится, если задача выполнялась самостоятельно, но допущены незначительные ошибки в оформлении условия и решения задачи или задача выполнена с небольшими отклонениями от заданных основных требований;
- отметка «3» ставится, если задача выполнена со значительными нарушениями заданных требований;
- отметка «2» ставится, если задача выполнена с грубыми нарушениями заданных требований или решения задачи нет, если учащийся не приступил к оформлению и решению задачи.