kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

ОГЭ по математике (задание 24)

Нажмите, чтобы узнать подробности

Данная работа позволяет проверить уровень своих знаний по геометрии на последнем этапе подготовки к экзамену. Все задания подобраны из открытого банка заданий.

Просмотр содержимого документа
«ОГЭ по математике (задание 24)»

Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=12, а расстояние от точки K до стороны AB равно 9.



В трапеции ABCD основания AD и BC равны соответственно 33 и 11, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=20.



В треугольнике ABC биссектриса угла A делит высоту, проведённую из вершины B, в отношении 5:3, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC=16.



Середина M стороны AD выпуклого четырёхугольника ABCD равноудалена от всех его вершин. Найдите AD, если BC=9, а углы B и C четырёхугольника равны соответственно 116° и 94°.



Углы при одном из оснований трапеции равны 39° и 51°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 19 и 3. Найдите основания трапеции.



Четырёхугольник ABCD со сторонами AB=39 и CD=12 вписан
в окружность. Диагонали AC и BD пересекаются в точке K,
причём ∠AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.



Окружности радиусов 42 и 84 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC  и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.



В треугольнике ABC известны длины сторон AB=30, AC=100, точка O — центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.



Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=12, а расстояние от точки K до стороны AB равно 9.



В трапеции ABCD основания AD и BC равны соответственно 33 и 11, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=20.



В треугольнике ABC биссектриса угла A делит высоту, проведённую из вершины B, в отношении 5:3, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC=16.



Середина M стороны AD выпуклого четырёхугольника ABCD равноудалена от всех его вершин. Найдите AD, если BC=9, а углы B и C четырёхугольника равны соответственно 116° и 94°.



Углы при одном из оснований трапеции равны 39° и 51°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 19 и 3. Найдите основания трапеции.



Четырёхугольник ABCD со сторонами AB=39 и CD=12 вписан
в окружность. Диагонали AC и BD пересекаются в точке K,
причём ∠AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.



Окружности радиусов 42 и 84 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC  и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.



В треугольнике ABC известны длины сторон AB=30, AC=100, точка O — центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.



Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 18 и 40 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=5/√3.



На стороне BC остроугольного треугольника ABC как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=15, MD=12, H — точка пересечения высот треугольника ABC. Найдите AH.



В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 8. Найдите стороны треугольника ABC.



Боковые стороны AB и CD трапеции ABCD равны соответственно 6 и 10, а основание BC равно 1. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.



В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=4, BC=2.



В равнобедренную трапецию, периметр которой равен 40, а площадь равна 80, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.



В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 9 и 5. Найдите площадь параллелограмма ABCD.



Сторона AD параллелограмма ABCD вдвое больше стороны CD.
Точка M — середина стороны AD. Докажите, что CM — биссектриса угла BCD.

Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 18 и 40 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=5/√3.



На стороне BC остроугольного треугольника ABC как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=15, MD=12, H — точка пересечения высот треугольника ABC. Найдите AH.



В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 8. Найдите стороны треугольника ABC.



Боковые стороны AB и CD трапеции ABCD равны соответственно 6 и 10, а основание BC равно 1. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.



В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=4, BC=2.



В равнобедренную трапецию, периметр которой равен 40, а площадь равна 80, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.



В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 9 и 5. Найдите площадь параллелограмма ABCD.



Сторона AD параллелограмма ABCD вдвое больше стороны CD.
Точка M — середина стороны AD. Докажите, что CM — биссектриса угла BCD.



Биссектрисы углов A и D трапеции ABCD пересекаются в точке M, лежащей на стороне BC. Докажите, что точка M равноудалена
от прямых AB, AD и CD.



В трапеции ABCD с основаниями AD и BC диагонали пересекаются в точке P. Докажите, что площади треугольников APB и CPD равны.



В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Докажите, что углы BB1A1 и BAA1 равны.



В выпуклом четырёхугольнике ABCD углы DAC и DBC равны. Докажите, что углы CDB и CAB также равны.



На средней линии трапеции ABCD с основаниями AD и BC выбрали произвольную точку E. Докажите, что сумма площадей треугольников BEC и AED равна половине площади трапеции.



Основания BC и AD трапеции ABCD равны соответственно 3 и 12, BD=6. Докажите, что треугольники CBD и BDA подобны.



Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP, если AK=16, а сторона AC в 1,6 раза больше стороны BC.



Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите диаметр окружности, если AB=3, AC=9.



Углы B и C треугольника ABC равны соответственно 62° и 88°.
Найдите BC, если радиус окружности, описанной около треугольника ABC, равен 12.







Биссектрисы углов A и D трапеции ABCD пересекаются в точке M, лежащей на стороне BC. Докажите, что точка M равноудалена
от прямых AB, AD и CD.



В трапеции ABCD с основаниями AD и BC диагонали пересекаются в точке P. Докажите, что площади треугольников APB и CPD равны.



В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Докажите, что углы BB1A1 и BAA1 равны.



В выпуклом четырёхугольнике ABCD углы DAC и DBC равны. Докажите, что углы CDB и CAB также равны.



На средней линии трапеции ABCD с основаниями AD и BC выбрали произвольную точку E. Докажите, что сумма площадей треугольников BEC и AED равна половине площади трапеции.



Основания BC и AD трапеции ABCD равны соответственно 3 и 12, BD=6. Докажите, что треугольники CBD и BDA подобны.



Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP, если AK=16, а сторона AC в 1,6 раза больше стороны BC.



Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите диаметр окружности, если AB=3, AC=9.



Углы B и C треугольника ABC равны соответственно 62° и 88°.
Найдите BC, если радиус окружности, описанной около треугольника ABC, равен 12.





Точка H является основанием высоты BH, проведённой из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH=15.



Отрезки AB и CD являются хордами окружности. Найдите длину
хорды CD, если AB=24, а расстояния от центра окружности до хорд AB  и CD равны соответственно 16 и 12.



Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=16, BF=12.



Высота AH ромба ABCD делит сторону CD на отрезки DH=16 и CH=4. Найдите высоту ромба.



Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 13, а одна из диагоналей ромба равна 52. Найдите углы ромба.



Биссектриса угла A параллелограмма ABCD пересекает сторону BC  в точке K. Найдите периметр параллелограмма, если BK=6, CK=10.



Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 60° и 150°, а CD=33.



Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=45, BC=20, CF:DF=4:1.



Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH=10, AC=40.



Прямая, параллельная стороне AC треугольника ABC, пересекает
стороны AB и BC в точках M и N соответственно. Найдите BN,
если MN=22, AC=55, NC=36.

Точка H является основанием высоты BH, проведённой из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH=15.



Отрезки AB и CD являются хордами окружности. Найдите длину
хорды CD, если AB=24, а расстояния от центра окружности до хорд AB  и CD равны соответственно 16 и 12.



Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=16, BF=12.



Высота AH ромба ABCD делит сторону CD на отрезки DH=16 и CH=4. Найдите высоту ромба.



Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 13, а одна из диагоналей ромба равна 52. Найдите углы ромба.



Биссектриса угла A параллелограмма ABCD пересекает сторону BC  в точке K. Найдите периметр параллелограмма, если BK=6, CK=10.



Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 60° и 150°, а CD=33.



Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=45, BC=20, CF:DF=4:1.



Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH=10, AC=40.



Прямая, параллельная стороне AC треугольника ABC, пересекает
стороны AB и BC в точках M и N соответственно. Найдите BN,
если MN=22, AC=55, NC=36.



Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и  BD пересекаются в точке M. Найдите MC, если AB=10, DC=25, AC=56.



Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 29.



Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.



На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что углы АDB и BEC тоже равны. Докажите, что треугольник АВС — равнобедренный.























Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и  BD пересекаются в точке M. Найдите MC, если AB=10, DC=25, AC=56.



Получите в подарок сайт учителя

Предмет: Математика

Категория: Планирование

Целевая аудитория: 9 класс

Скачать
ОГЭ по математике (задание 24)

Автор: Фомина Нюргуяна Владимировна

Дата: 05.12.2016

Номер свидетельства: 365963

Похожие файлы

object(ArrayObject)#865 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(65) "Пробный ОГЭ математика 8 класс 2016-2017"
    ["seo_title"] => string(41) "probnyi_oge_matiematika_8_klass_2016_2017"
    ["file_id"] => string(6) "383888"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "testi"
    ["date"] => string(10) "1485370853"
  }
}
object(ArrayObject)#887 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(82) "Конспект урока математики "Подготовка к ОГЭ" "
    ["seo_title"] => string(45) "konspiekt-uroka-matiematiki-podghotovka-k-oge"
    ["file_id"] => string(6) "223150"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1437317185"
  }
}
object(ArrayObject)#865 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(58) "Арифметическая прогрессия. ОГЭ."
    ["seo_title"] => string(34) "arifmietichieskaiaproghriessiiaoge"
    ["file_id"] => string(6) "288194"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1454596341"
  }
}
object(ArrayObject)#887 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(117) "Работа учителя математики по подготовке учащихся 9 класса к ОГЭ "
    ["seo_title"] => string(75) "rabota-uchitielia-matiematiki-po-podghotovkie-uchashchikhsia-9-klassa-k-oge"
    ["file_id"] => string(6) "206036"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1430076477"
  }
}
object(ArrayObject)#865 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(55) "Готовимся к ОГЭ по математике "
    ["seo_title"] => string(32) "gotovimsia-k-oge-po-matiematikie"
    ["file_id"] => string(6) "113814"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1411056339"
  }
}

Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства