kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

КЕЙС " ЕГЭ. Применение производной при нахождении наибольшего, наименьшего значения функции"

Нажмите, чтобы узнать подробности

Задания  В 12 профильного теста  ЕГЭ по математике это -  задачи на выполнение действий с функциями и производными функций, исследование функций. Задание на вычисление с помощью производной точек экстремума данной функции или наибольшего (наименьшего) значения данной функции на данном отрезке.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«КЕЙС " ЕГЭ. Применение производной при нахождении наибольшего, наименьшего значения функции"»

КЕЙС . 2 ГРУППА " ЕГЭ. Применение производной при нахождении наибольшего, наименьшего значения функции"

Задания В 12прфильного теста ЕГЭ по математике это - задачи на выполнение действий с функциями и производными функций, исследование функций. Задание на вычисление с помощью производной точек экстремума данной функции или наибольшего (наименьшего) значения данной функции на данном отрезке.

Конечно же, с необходимостью изучения способов решения прототипов связаны проблемы с тем, что с заданиями этого типа на диагностических работах справляются единицы.

Производная – одно из самых важных понятий математического анализа. Знание производной позволяет решать многочисленные задачи по физике, алгебре и геометрии.

Конечно, при решении некоторых задач В12 можно увидеть методы и средства без понимания теории производной.

Настаиваю на том, чтобы вы изучили и поняли теорию, тогда никакая задача в этой теме затруднений не вызовет.

Итак, что для решения задач на производную необходимо знать:

1. Таблицу производных и правила дифференцирования.

2. Правила дифференцирования сложной функции.

3.Необходимый признак возрастания (убывания) функций.

4. Понятия экстремумов (точки минимума, максимума).

5. Применение производной для нахождения наибольшего и наименьшего значений функции.

Помимо проблемы итоговой аттестации возникают вопросы и сомнения, в какой мере приобретаемые в этой области знания могут и будут востребованы в дальнейшем, насколько оправданы как затраты времени, так и здоровья на изучение этой темы.

Перед собой поставьте вопрос: зачем нужна производная? Где мы встречаемся с производной и используем её? Можно ли без нее обойтись в математике и не только?

И почему бы не сосредоточить интеллектуальные ресурсы во времени и пространстве на выработку поначалу подхода к этой ситуации: как одолеть задание №12? Может, кто-то уже его победил? Может у кого-то есть верный способ, как обойти проблему? И как понять, нужно ли вообще волноваться по данному поводу?

ЗАДАНИЯ: Применение производной для нахождения наибольшего и наименьшего значений функции на указанном промежутке. Разработать и предоставить на уроке не менее трех рекомендаций к ликвидации пробелов по теме, рассказать доступно, доходчиво, используя пример.

1. Найти наименьшее значение функции у = + х на отрезке [0; π/2]

2. Найти наибольшее значение функции у = + 4х- на отрезке [0; π/2]

3. Найдите наибольшее значение функции на отрезке

4. Найдите наибольшее значение функции на отрезке . 5. Найдите наименьшее значение функции на отрезке .























































Производная функции используется всюду, где есть неравномерное протекание процесса: это и неравномерное механическое движение, и переменный ток, и химические реакции и радиоактивный распад вещества и т.д., так как механический смысл производной - это мгновенная скорость .

Производную применяют для исследования функции и построения ее графика, для нахождения наибольшего и наименьшего значений функции.

Слова «производная» и «произошло» имеют похожие части слова, да и смысл похож: производная происходит от исходной функции (переложив на отношения человека: исходная функция - «мама», её производная «дочь»). Производная - часть математической науки, одно из её звеньев. Нет этого звена - прерваны связи между многими понятиями.
































ОЦЕНОЧНЫЙ ЛИСТ

по теме «Применение производной в задачах ЕГЭ».

№ п/п

Ф.И. учащегося

Теоретические сведения

Исследование функций на монотонность

Исследование функций на экстремумы

Нахождение наиб. и наим. значений функции

Оценка (ставит ученик)

Итоговая оценка учителя

1.








2.








3.








4.








5.








6.








Условные знаки для самодиагностики учащегося.

+ Отлично изучил тему.

+, – Есть пробелы, но я. их решу самостоятельно.

–, + Были пробелы, но я их решил на уроке или с помощью одноклассников.

– Тема усвоена непрочно, нужна помощь учителя.

P.S. Колонки оценочного листа, заполняемые самими учениками (см. условные обозначения), не влияют на оценку ученика за урок.














Получите в подарок сайт учителя

Предмет: Математика

Категория: Планирование

Целевая аудитория: 11 класс

Автор: Любовь Геннадьевна Акишина

Дата: 15.11.2023

Номер свидетельства: 639934


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1750 руб.
2500 руб.
1310 руб.
1870 руб.
1360 руб.
1940 руб.
1580 руб.
2260 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства