kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Структура и состав интеллектуальной робототехнической системы

Нажмите, чтобы узнать подробности

Интеллектуальная робототехническая система включает объект управления совместно со средой, в которой она работает. Объектуправления представляет непосредственно механизмы перемещения инструмента и изделия. 

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Структура и состав интеллектуальной робототехнической системы»

Тема: Структура и состав интеллектуальной робототехнической системы


Структура интеллектуальной робототехнической системы

Интеллектуальная робототехническая система включает объект управления совместно со средой, в которой она работает. Объектуправления представляет непосредственно механизмы перемещения инструмента и изделия. В состав манипуляторов входят исполнительные двигатели, которые осуществляют их перемещение по заданным законам RД и RИИнформация о положении выходных звеньев манипуляторов определяется датчиками, расположенными в шарнирах звеньев манипуляторов, которые получают информации о выходных координатах механизмов перемещения, их скоростях, ускорениях и силах. Основная функция системы управления манипуляторами состоит в формировании законов перемещения исполнительными механизмами манипуляторов в реальном времени UИ(t) и UД(t). Данные системы обычно работают в следящем режиме, обеспечивающем выполнение каждой степенью подвижности манипуляторов заданной траектории перемещения с требуемыми точностью, скоростью и усилием. Выходными координатами манипуляторов являются RД и RИ. В результате взаимодействия инструмента с деталью создается усилие P(t), которое воздействует на исполнительные органы манипуляторов. Применительно к рассматриваемой системе в качестве объекта управления и внешней среды следует рассматривать манипуляторы перемещения изделия, инструмента и непосредственно сам технологический процесс.

Рис.  Структура робототехнической системы

На рисунке  не раскрывается

состав подсистемы управления

высшего уровня. Ее структура и выполняемые функции подробно описаны в лекции 1. Общим информационным управляющим каналом на систему управления низшего уровня является канал передачи управляющих сигналов U(t) и обратной связью от системы низшего уровня - сигнал R(t). Управляющее воздействие U(t) представляет выбранную программу действия из некоторого множества  и соответствующую заданной детали, либо обработке заданной поверхности детали. Какую из программ следует выбрать, решается системой высшего уровня как на основе информации от системы распознавания поверхности, так и на основе указаний оператора, управляющего робототехнической системой. Выбранная программа U(t) задается непрерывно в реальном масштабе времени.

Обратная связь R(t) может нести полную информацию о работе системы управления низшего уровня в виде логических сигналов о ее состоянии, непрерывную информацию о геометрических размерах, качестве обработки поверхности детали и информацию о состоянии внешней среды, например, о температуре окружающей среды или двигателей, о состоянии сопутствующих обработке других устройств.



Состав интеллектуальной робототехнической системы

Рис.  Система управления робота-станка.

Представленная на рисунке система является обобщенной для технологических машин широкого назначения. Более детальное представление данной системы рассмотрим на примере системы управления робота-станка. Отличительной особенностью рассматриваемой следящей системы управления от существующих станочных систем является наличие главной обратной связи по результату обработки поверхности (вычисление ДAi*(t) ). Вычисление ДAi*(t) осуществляется в системе координат детали решениемпрямой задачи о положении F(qинф.) по информации датчиков, располагаемых в сочленениях звеньев механизма. Погрешность вычисляется сравнением программного значения управляющего воздействия ДAi(t) и вычисленного реального его значения ДAi*(t).Обратный Якобиан J-1 и устройство K выполняют функции преобразования и решения линейной задачи вычисления приращений обобщенных координат qi. Суммируя приращения на каждом шаге вычисления с предыдущим значением, формируется управляющее воздействие на исполнительные приводы qi.

В качестве электродвигателей приводов манипуляторов применяются безредукторные и высокомоментные электродвигатели. Это требует применения методики синтеза приводов с учетом переменности моментов инерции, а для многостепенной механической системы требуется также учитывать взаимовлияние приводов по степеням подвижности.

Подсистема управления высшего уровня выполняет следующие функции. Получая информацию от оптической системы о состоянии обрабатываемой поверхности и ее геометрических размерах, данная подсистема выбирает требуемую программу обработки из некоторого детерминированного множества программ либо при ее отсутствии на основе анализа принимает наиболее близкую по критерию точности воспроизведения требуемой поверхности.

Оптические средства контроля геометрических размеров припуска и качества обработки (шероховатости) поверхности детали позволяют оптимизировать режимы резания. В работе приведено описание оптической системы, построенной с применением специальной решетки и источника монохроматического света. В настоящем курсе лекций дается описание данной системы, рассматриваются вопросы построения системы распознавания зон с заданным качеством обработки и формирования на этой основе новой программы обработки поверхности.

Формирование программной траектории перемещения инструмента относительно обрабатываемой поверхности ДАi(t), производится на основе информации, полученной от оптической системы контроля поверхности и экспертной оценки при выборе режимов обработки. (В лекции 7 был рассмотрен пример выбора режимов и программы обработки в среде CLIPS). Информация о геометрических размерах полученной после обработки поверхности контролируется оптической системой контроля. Эта система формирует также данные о качестве обрабатываемой поверхности. В зависимости от этой информации выбирается ограниченная область обработки поверхности.

Математическая модель объекта управления совместно с окружающей средой, формируемая в системе высшего уровня на основе информации, получаемой от датчиков, включает: чертеж детали с реальными геометрическими размерами, чертеж требуемой идеальной детали и набор параметров, определяющих режимы обработки. Указанная модель позволяет, проигрывая различные ситуации, представляющие набор процедур для выполнения обработки, выбирать цель и формировать программу обработки U(t).

Пример робота-станка

Пример робота-станка, построенного на механизмах параллельной структуры и оснащенного интеллектуальной системой обработки информации и управления, показан на рисунке Исполнительный механизм робота-станка включает манипулятор перемещения изделия, представляющий пятизвенник, состоящий из звеньев 10, 11, 12, 13 и основания, манипулятор перемещения инструмента, который представляет собой два звена, управляемых двигателями 1 и 4 с вертикальной осью вращения. Манипулятор перемещения изделия осуществляет управляемое перемещение по четырем координатам с помощью четырех исполнительных приводов 2, 3, 8 и 14. Обработка выполняется путем взаимного перемещения инструмента 6 относительно изделия 9. Для стабилизации и удержания веса манипулятора перемещения изделия применено пневматическое устройство 16. Бабка для вращения изделия 15 и бабка для инструмента 5 содержат исполнительные приводы для вращения инструмента 7 и изделия 8. В целом механизм относительного перемещения робота-станка позволяет выполнять взаимное перемещение инструмента и изделия по шести координатам.

Рис. Робот-станок

В механизмах параллельной структуры имеются кинематические пары, которые выполняют функции преобразования движения и не содержат исполнительных силовых элементов (пятизвенник в манипуляторе перемещения изделия). В сочленениях данных пар возможна установка дополнительных датчиков, позволяющих повысить точность контроля положения выходного звена. Кроме того, установка в этих сочленениях дополнительных приводов, управляемых, к примеру, по силе, разгружает основные приводы, выполняющие перемещения по заданным координатам, и позволяет по одной и той же координате управлять положением, скоростью и силой.

Пример кинематической схемы робота-станка приведен для лучшего понимания работы реальной интеллектуальной робототехнической системы, чтобы показать место установки датчиков и дополнительных приводов в механизме.

В рассматриваемом курсе лекций мы не рассматриваем вопросы работы мехатронных элементов в составе интеллектуальной робототехнической системы. Безусловно, аппаратная часть системы управления робота-станка содержит мехатронные элементы. Это непосредственно оптическая система, которая включает механические элементы преобразования оптического изображения и цифровую систему обработки изображения. Встраиваемые исполнительные приводы совместно с датчиками положения также представляют мехатронные системы восприятия и преобразования информации.


Получите в подарок сайт учителя

Предмет: Информатика

Категория: Уроки

Целевая аудитория: 11 класс.
Урок соответствует ФГОС

Скачать
Структура и состав интеллектуальной робототехнической системы

Автор: Малых Денис Николаевич

Дата: 19.04.2017

Номер свидетельства: 410251


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Ваш личный кабинет
Проверка свидетельства