kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Компьютерное имитационное моделирование. Статистическое имитационное моделирование.

Нажмите, чтобы узнать подробности

Применение статистического моделирования широко распространено в задачах анализа и проектирования автоматизированных систем, информационно-вычислительных сетей и других сложных организационно-технических объектов. Статистическое моделирование – это метод решения вероятностных и детерминированных задач, основанный на эффективном использовании случайных чисел и законов теории вероятностей. Статистическое моделирование эксплуатирует способность современных компьютеров порождать и обрабатывать за короткие промежутки времени огромное количество случайных чисел. Подавая последовательность случайных чисел на вход исследуемой функции или модели, на её выходе получают преобразованную последовательность случайных величин – выборку. При правильной организации подобного статистического эксперимента выборка содержит ценную информацию об исследуемой функции или модели, которую трудно или практически невозможно получить другими способами. Информация извлекается из выборки методами математической статистики (раздел теории вероятностей).

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Компьютерное имитационное моделирование. Статистическое имитационное моделирование.»

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОРДОВСКИЙ ГОСУДАРСТВЕННЫЙ

ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ М. Е. ЕВСЕВЬЕВА»




Факультет физико-математический


Кафедра информатики и вычислительной техники






РЕФЕРАТ




КОМПЬЮТЕРНОЕ ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ И

СТАТИСТИЧЕСКОЕ ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ





Автор работы __________________________________________ В. В. Тюрина

Направления подготовки 44.03.05 Педагогическое образование

Профиль Математика. Информатика



Руководитель работы

канд. физико-матем. наук, доцент ____________________ Т. В. Кормилицына













Саранск 2021

Введение

Применение статистического моделирования широко распространено в задачах анализа и проектирования автоматизированных систем, информационно-вычислительных сетей и других сложных организационно-технических объектов. Статистическое моделирование – это метод решения вероятностных и детерминированных задач, основанный на эффективном использовании случайных чисел и законов теории вероятностей. Статистическое моделирование эксплуатирует способность современных компьютеров порождать и обрабатывать за короткие промежутки времени огромное количество случайных чисел. Подавая последовательность случайных чисел на вход исследуемой функции или модели, на её выходе получают преобразованную последовательность случайных величин – выборку. При правильной организации подобного статистического эксперимента выборка содержит ценную информацию об исследуемой функции или модели, которую трудно или практически невозможно получить другими способами. Информация извлекается из выборки методами математической статистики (раздел теории вероятностей). Метод статистического моделирования (синоним этого названия – метод Монте-Карло) позволяет, таким образом, опираясь на строгие законы теории вероятностей, свести широкий класс сложных задач к относительно простым арифметико-логическим преобразованиям выборок. Поэтому такой метод получил весьма широкое распространение. В частности, он почти всегда используется при имитационном моделировании реальных сложных систем.

1. Определения понятия «имитационное моделирование»

В русском языке прилагательное «имитационный» часто используют как синоним прилагательных «сходный», «похожий». Среди словосочетаний «математическая модель», «аналоговая модель», «статистическая модель», пара – «имитационная модель», появившаяся в русском языке, наверное в результате неточности перевода, постепенно приобрела новое, отличное от первоначального значение.

Указывая, что данная модель имитационная, мы обычно подчеркиваем, что, в отличие от других типов абстрактных моделей, в этой модели сохранены и легко узнаваемы такие черты моделируемого объекта, как структура, связи между компонентами, способ передачи информации. С имитационными моделями также обычно связывают и требование иллюстрации их поведения с помощью принятых в данной прикладной области графических образов. Недаром имитационными обычно называют модели предприятий, экологические и социальные модели.

Имитационное моделирование = компьютерное моделирование (синонимы). В настоящее время для этого вида моделирования используется синоним «компьютерное моделирование», подчеркивая тем самым, что решаемые задачи невозможно решить, используя стандартные средства выполнения вычислительных расчетов (калькулятор, таблицы или компьютерные программы, заменяющие эти средства).

Имитационная модель – специальный программный комплекс, который позволяет имитировать деятельность какого-либо сложного объекта, в котором:

  • отражена структура объекта (и представлена графическим образом) со связями;

  • выполняются параллельные процессы.

Для описания поведения могут использоваться как глобальные законы, так и локальные, полученные на основе натурных экспериментов

Таким образом, имитационное моделирование предполагает использование компьютерных технологий для имитации различных процессов или операций (т. е. их моделирования), выполняемых реальными устройствами. Устройство или процесс обычно именуется системой. Для научного исследования системы мы прибегаем к определенным допущениям, касающимся ее функционирования. Эти допущения, как правило, имеющие вид математических или логических отношений, составляют модель, с помощью которой можно получить представление о поведении соответствующей системы.

Если отношения, которые образуют модель, достаточно просты для получения точной информации по интересующим нас вопросам, то можно использовать математические методы. Такого рода решение называется аналитическим. Однако большинство существующих систем являются очень сложными, и для них невозможно создать реальную модель, описанную аналитически. Такие модели следует изучать с помощью моделирования. При моделировании компьютер используется для численной оценки модели, а с помощью полученных данных рассчитываются ее реальные характеристики.

С точки зрения специалиста (информатика-экономиста, математика-программиста или экономиста-математика), имитационное моделирование контролируемого процесса или управляемого объекта – это высокоуровневая информационная технология, которая обеспечивает два вида действий, выполняемых с помощью компьютера:

– работы по созданию или модификации имитационной модели;

– эксплуатацию имитационной модели и интерпретацию результатов.

Имитационное (компьютерное) моделирование экономических процессов обычно применяется в двух случаях:

– для управления сложным бизнес-процессом, когда имитационная модель управляемого экономического объекта используется в качестве инструментального средства в контуре адаптивной системы управления, создаваемой на основе информационных (компьютерных) технологий;

– при проведении экспериментов с дискретно-непрерывными моделями сложных экономических объектов для получения и отслеживания их динамики в экстренных ситуациях, связанных с рисками, натурное моделирование которых нежелательно или невозможно.

2. Суть компьютерного моделирования

Суть компьютерного моделирования состоит в следующем: на основе математической модели с помощью ЭВМ проводится серия вычислительных экспериментов, т.е. исследуются свойства объектов или процессов, находятся их оптимальные параметры и режимы работы, уточняется модель. Например, располагая уравнением, описывающим протекание того или иного процесса, можно изменяя его коэффициенты, начальные и граничные условия, исследовать, как при этом будет вести себя объект. Имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями, имитирующими поведение реальных объектов, процессов или систем.

Реальные процессы и системы можно исследовать с помощью двух типов математических моделей: аналитических и имитационных.

В аналитических моделях поведение реальных процессов и систем (РПС) задается в виде явных функциональных зависимостей (уравнений линейных или нелинейных, дифференциальных или интегральных, систем этих уравнений). Однако получить эти зависимости удается только для сравнительно простых РПС. Когда явления сложны и многообразны исследователю приходится идти на упрощенные представления сложных РПС. В результате аналитическая модель становится слишком грубым приближением к действительности. Если все же для сложных РПС удается получить аналитические модели, то зачастую они превращаются в трудно разрешимую проблему. Поэтому исследователь вынужден часто использовать имитационное моделирование.

Имитационное моделирование представляет собой численный метод проведения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими поведение реальных объектов, процессов и систем во времени в течение заданного периода. При этом функционирование РПС разбивается на элементарные явления, подсистемы и модули. Функционирование этих элементарных явлений, подсистем и модулей описывается набором алгоритмов, которые имитируют элементарные явления с сохранением их логической структуры и последовательности протекания во времени.

Имитационное моделирование – это совокупность методов алгоритмизации функционирования объектов исследований, программной реализации алгоритмических описаний, организации, планирования и выполнения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими функционирование РПС в течение заданного периода.

Под алгоритмизацией функционирования РПС понимается пооперационное описание работы всех ее функциональных подсистем отдельных модулей с уровнем детализации, соответствующем комплексу требований к модели.

«Имитационное моделирование» (ИМ) – это двойной термин. «Имитация» и «моделирование» – это синонимы. Фактически все области науки и техники являются моделями реальных процессов. Чтобы отличить математические модели друг от друга, исследователи стали давать им дополнительные названия. Термин «имитационное моделирование» означает, что мы имеем дело с такими математическими моделями, с помощью которых нельзя заранее вычислить или предсказать поведение системы, а для предсказания поведения системы необходим вычислительный эксперимент (имитация) на математической модели при заданных исходных данных.

3. Достоинства и недостатки

Основное достоинство ИМ:

1. возможность описания поведения компонент (элементов) процессов или систем на высоком уровне детализации;

2. отсутствие ограничений между параметрами ИМ и состоянием внешней среды РПС;

3. возможность исследования динамики взаимодействия компонент во времени и пространстве параметров системы;

Эти достоинства обеспечивают имитационному методу широкое распространение.

Рекомендуется использовать имитационное моделирование в следующих случаях:

1. Если не существует законченной постановки задачи исследования и идет процесс познания объекта моделирования. Имитационная модель служит средством изучения явления.

2. Если аналитические методы имеются, но математические процессы сложны и трудоемки, и имитационное моделирование дает более простой способ решения задачи.

3. Когда кроме оценки влияния параметров (переменных) процесса или системы желательно осуществить наблюдение за поведением компонент (элементов) процесса или системы (ПС) в течение определенного периода.

4. Когда имитационное моделирование оказывается единственным способом исследования сложной системы из-за невозможности наблюдения явлений в реальных условиях (реакции термоядерного синтеза, исследования космического пространства).

5. Когда необходимо контролировать протекание процессов или поведение систем путем замедления, или ускорения явлений в ходе имитации.

6. При подготовке специалистов для новой техники, когда на имитационных моделях обеспечивается возможность приобретения навыков в эксплуатации новой техники.

7. Когда изучаются новые ситуации в РПС. В этом случае имитация служит для проверки новых стратегий и правил проведения натурных экспериментов.

8. Когда особое значение имеет последовательность событий в проектируемых ПС и модель используется для предсказания узких мест в функционировании РПС.

Однако ИМ наряду с достоинствами имеет и недостатки:

1. Разработка хорошей ИМ часто обходится дороже создания аналитической модели и требует больших временных затрат.

2. Может оказаться, что ИМ неточна (что бывает часто), и мы не в состоянии измерить степень этой неточности.

3. Зачастую исследователи обращаются к ИМ, не представляя тех трудносте, с которыми они встретятся и совершают при этом ряд ошибок методологического характера.

И тем не менее ИМ является одним из наиболее широко используемых методов при решении задач синтеза и анализа сложных процессов и систем.

Одним из видов имитационного моделирования является статистическое имитационное моделирование, позволяющее воспроизводить на ЭВМ функционирование сложных случайных процессов.

При исследовании сложных систем, подверженных случайным возмущениям используются вероятностные аналитические модели и вероятностные имитационные модели.

В вероятностных аналитических моделях влияние случайных факторов учитывается с помощью задания вероятностных характеристик случайных процессов (законы распределения вероятностей, спектральные плотности или корреляционные функции). При этом построение вероятностных аналитических моделей представляет собой сложную вычислительную задачу. Поэтому вероятностное аналитическое моделирование используют для изучения сравнительно простых систем.

Подмечено, что введение случайных возмущений в имитационные модели не вносит принципиальных усложнений, поэтому исследование сложных случайных процессов проводится в настоящее время, как правило, на имитационных моделях.

В вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров ПС. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием.

4. Статистическое имитационное моделирование

В вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров ПС. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием.

Статистическая модель случайного процесса – это алгоритм, с помощью которого имитируют работу сложной системы, подверженной случайным возмущениям; имитируют взаимодействие элементов системы, носящих вероятностный характер.

При реализации на ЭВМ статистического имитационного моделирования возникает задача получения на ЭВМ случайных числовых последовательностей с заданными вероятностными характеристиками. Численный метод, решающий задачу генерирования последовательности случайных чисел с заданными законами распределения, получил название «метод статистических испытаний» или «метод Монте-Карло».

Так как метод Монте-Карло кроме статистического моделирования имеет приложение к ряду численных методов (взятие интегралов, решение уравнений), то целесообразно иметь различные термины.

Итак, статистическое моделирование - это способ изучения сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационных моделей.

Метод Монте-Карло – это численный метод, моделирующий на ЭВМ псевдослучайные числовые последовательности с заданными вероятностными характеристиками.

Методика статистического моделирования состоит из следующих этапов:

1. Моделирование на ЭВМ псевдослучайных последовательностей с заданной корреляцией и законом распределения вероятностей (метод Монте-Карло), имитирующих на ЭВМ случайные значения параметров при каждом испытании;

2. Преобразование полученных числовых последовательностей на имитационных математических моделях.

3. Статистическая обработка результатов моделирования.

5. Метод Монте Карло

Датой рождения метода Монте-Карло принято считать 1949 г., когда появилась статья под названием «The Monte Carlo method». Создателями этого метода считают американских математиков Дж. Неймана и С. Улама. В СССР первые статьи о методе Монте-Карло были опубликованы в 1955-1956гг.

Любопытно, что теоретическая основа метода была известна давно. Более того, некоторые задачи статистики рассчитывались иногда с помощью случайных выборок, т. е. фактически методом Монте-Карло. Однако до появления электронных вычислительных машин (ЭВМ) этот метод не мог найти сколько-нибудь широкого применения, ибо моделировать случайные величины вручную очень трудоемкая работа. Таким образом, возникновение метода Монте-Карло как весьма универсального численного метода стало возможным только благодаря появлению ЭВМ.

Само название «Монте-Карло» происходит от города Монте-Карло в княжестве Монако, знаменитого своим игорным домом.

Идея метода чрезвычайно проста и состоит она в следующем. Вместо того, чтобы описывать процесс с помощью аналитического аппарата (дифференциальных или алгебраических уравнений), производится «розыгрыш» случайного явления с помощью специально организованной процедуры, включающей в себя случайность и дающей случайный результат. В действительности конкретное осуществление случайного процесса складывается каждый раз по-иному; так же и в результате статистического моделирования мы получаем каждый раз новую, отличную от других реализацию исследуемого процесса. Что она может нам дать? Сама по себе ничего, так же как, скажем, один случай излечения больного с помощью какого-либо лекарства. Другое дело, если таких реализаций получено много. Это множество реализаций можно использовать как некий искусственно полученный статистический материал, который может быть обработан обычными методами математической статистики. После такой обработки могут быть получены любые интересующие нас характеристики: вероятности событий, математические ожидания и дисперсии случайных величин и т. д. При моделировании случайных явлений методом Монте-Карло мы пользуемся самой случайностью как аппаратом исследования, заставляем ее «работать на нас».

Нередко такой прием оказывается проще, чем попытки построить аналитическую модель. Для сложных операций, в которых участвует большое число элементов (машин, людей, организаций, подсобных средств), в которых случайные факторы сложно переплетены, где процесс — явно немарковскпй, метод статистического моделирования, как правило, оказывается проще аналитического (а нередко бывает и единственно возможным).

В сущности, методом Монте-Карло может быть решена любая вероятностная задача, но оправданным он становится только тогда, когда процедура розыгрыша проще, а не сложнее аналитического расчета. Приведем пример, когда метод Монте-Карло возможен, но крайне неразумен. Пусть, например, по какой-то цели производится три независимых выстрела, из которых каждый попадает в цель с вероятностью 1/2. Требуется найти вероятность хотя бы одного попадания. Элементарный расчет дает нам вероятность хотя бы одного попадания равной 1 — (1/2)3 = 7/8. Ту же задачу можно решить и «розыгрышем», статистическим моделированием. Вместо «трех выстрелов» будем бросать «три монеты», считая, скажем, герб—за попадание, решку — за «промах». Опыт считается «удачным», если хотя бы на одной из монет выпадет герб. Произведем очень-очень много опытов, подсчитаем общее количество «удач» и разделим на число N произведенных опытов. Таким образом, мы получим частоту события, а она при большом числе опытов близка к вероятности. Ну, что же? Применить такой прием мог бы разве человек, вовсе не знающий теории вероятностей, тем не менее, в принципе, он возможен.

Метод Монте-Карло- это численный метод решения математических задач при помощи моделирования случайных величин.

Пример 1. Предположим, что нам нужно вычислить площадь плоской фигуры S. Это может быть произвольная фигура с криволинейной границей,

заданная графически или аналитически, связная или состоящая из нескольких кусков. Пусть это будет фигура изображенная на рис. 1, и

предположим, что она вся расположена внутри единичного квадрата.

Выберем внутри квадрата N случайных точек. Обозначим через F число

точек, попавших при этом внутрь S. Геометрически очевидно, что площадь

S приближенно равна отношению F/N. Чем больше N, тем больше точность этой оценки.

Две особенности метода Монте-Карло.

Первая особенность метода – простая структура вычислительного алгоритма.

Вторая особенность метода – погрешность вычислений, как правило, пропорциональна D/N2, где D - некоторая постоянная, N – число испытаний. Отсюда видно, что для того, чтобы уменьшить погрешность в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить N (т. е. объем работы) в 100 раз.

Ясно, что добиться высокой точности таким путем невозможно. Поэтому обычно говорят, что метод Монте-Карло особенно эффективен при решении тех задач, в которых результат нужен с небольшой точностью (5-10%). Способ применения метода Монте-Карло по идее довольно прост. Чтобы получить искусственную случайную выборку из совокупности величин, описываемой некоторой функцией распределения вероятностей, следует:

1. Построить график или таблицу интегральной функции распределения на основе ряда чисел, отражающего исследуемый процесс (а не на основе ряда случайных чисел), причем значения случайной переменной процесса откладываются по оси абсцисс (х), а значения вероятности (от 0 до 1) - по оси ординат (у).

2. С помощью генератора случайных чисел выбрать случайное десятичное число в пределах от 0 до 1 (с требуемым числом разрядов).

3. Провести горизонтальную прямую от точки на оси ординат соответствующей выбранному случайному числу, до пересечения с кривой распределения вероятностей.

4. Опустить из этой точки пересечения перпендикуляр на ось абсцисс.

5. Записать полученное значение х. Далее оно принимается как выборочное значение.

6. Повторить шаги 2-5 для всех требуемых случайных переменных, следуя тому порядку, в котором они были записаны. Общий смысл легко понять с помощью простого примера: количество звонков на телефонную станцию в течение 1 минуты соответствует следующему распределению:

Кол - во звонков Вероятность Кумулятивная вероятность
О 0,10 0,10

1 0,40 0,50

2 0,30 0,80

3 0,15 0,95

4 0,05 1,00

Предположим, что мы хотим провести мысленный эксперимент для пяти периодов времени.

Построим график распределения кумулятивной вероятности. С помощью генератора случайных чисел получим пять чисел, каждое из которых используем для определения количества звонков в данном интервале времени.

Период времени Случайное число Количество звонков

1 0,09 О

2 0,54 2

3 0,42 1

4 0,86 3

5 0,23 1

Взяв еще несколько таких выборок, можно убедиться в том, что если используемые числа действительно распределены равномерно, то каждое из значений исследуемой величины будет появляться с такой же частотой, как ирреальном мире», и мы получим результаты, типичные для поведения исследуемой системы.

Вернемся к примеру. Для расчета нам нужно было выбирать случайные

точки в единичном квадрате. Как это сделать физически?

Представим такой эксперимент. Рис.1. (в увеличенном масштабе) с фигурой

S и квадратом повешен на стену в качестве мишени. Стрелок, находившийся

на некотором расстоянии от стены, стреляет N раз, целясь в центр квадрата.

Конечно, все пули не будут ложиться точно в центр: они пробьют на мишени N случайных точек. Можно ли по этим точкам оценить площадь S.

Результат такого опыта показан на рис. 2.(см. Приложение 2)

Ясно, что при высокой квалификации стрелка результат опыта будет очень плохим, так как почти все пули будут ложиться вблизи центра и попадут в S.

Нетрудно понять, что наш метод вычисления площади будет справедлив только тогда, когда случайные точки будут не просто «случайными», а еще и «равномерно разбросанными» по всему квадрату.

В задачах исследования операций метод Монте-Карло применяется в

трех основных ролях:

1) при моделировании сложных, комплексных операций, где

присутствует много взаимодействующих случайных факторов;

2) при проверке применимости более простых, аналитических

методов и выяснении условий их применимости;

3) в целях выработки поправок к аналитическим формулам типа

«эмпирических формул» в технике.

Заключение

Основным недостатком аналитических моделей является то, что они неизбежно требуют каких-то допущений, в частности, о «марковости» процесса. Приемлемость этих допущений далеко не всегда может быть оценена без контрольных расчетов, а производятся они методом Монте-Карло. Образно говоря, метод Монте-Карло в задачах исследования операций играет роль своеобразного ОТК. Статистические модели не требуют серьезных допущений и упрощений. В принципе, в статистическую модель «лезет» что угодно — любые законы распределения, любая сложность системы, множественность ее состояний. Главный же недостаток статистических моделей — их громоздкость и трудоемкость. Огромное число реализации, необходимое для нахождения искомых параметров с приемлемой точностью, требует большого расхода машинного времени. Кроме того, результаты статистического моделирования гораздо труднее осмыслить, чем расчеты по аналитическим моделям, и соответственно труднее оптимизировать решение (его приходится «нащупывать» вслепую). Правильное сочетание аналитических и статистических методов в исследовании операций — дело искусства, чутья и опыта исследователя. Нередко аналитическими методами удается описать какие-то «подсистемы», выделяемые в большой системе, а затем из таких моделей, как из «кирпичиков», строить здание большой, сложной модели.

Список использованных источников

1. Каталевский, Д.Ю. Основы имитационного моделирования и системного анализа в управлении: учебное пособие; 2-е изд., перераб. и доп. / Д.Ю. Каталевский. — М.: «Дело» РАНХиГС, 2015. — 496 с.

2. Кузнецов, Ю.А. Применение пакетов имитационного моделирования для анализа математических моделей экономических систем: учебно-методический материал / Ю.А. Кузнецов, В.И. Перова. - Нижний Новгород, 2017- 98 с.

3. Лобач, В.И. Имитационное и статистическое моделирование: практикум / В.И. Лобач [и др]. - Минск.: БГУ, 2016. - 189 с.



Получите в подарок сайт учителя

Предмет: Информатика

Категория: Прочее

Целевая аудитория: Прочее

Скачать
Компьютерное имитационное моделирование. Статистическое имитационное моделирование.

Автор: Тюрина Вероника Валерьевна

Дата: 03.11.2021

Номер свидетельства: 590414

Похожие файлы

object(ArrayObject)#851 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(159) "Компьютерное имитационное моделирование. Статистическое имитационное моделирование."
    ["seo_title"] => string(80) "kompiuternoe_imitatsionnoe_modelirovanie_statisticheskoe_imitatsionnoe_modelir_2"
    ["file_id"] => string(6) "590415"
    ["category_seo"] => string(11) "informatika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1635961650"
  }
}
object(ArrayObject)#873 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(158) "Компьютерное имитационное моделирование. Статистическое имитационное моделирование"
    ["seo_title"] => string(80) "kompiuternoe_imitatsionnoe_modelirovanie_statisticheskoe_imitatsionnoe_modelirov"
    ["file_id"] => string(6) "548785"
    ["category_seo"] => string(11) "informatika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1588701041"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства