kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Вопросы и задачи к публичному зачёту по геометрии 8 класс

Нажмите, чтобы узнать подробности

Вопросы и задачи к публичному зачету по геометрии в 8 классе

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Вопросы и задачи к публичному зачёту по геометрии 8 класс»

Вопросы к публичному зачёту по геометрии 8 класс.

Вопрос №1.

1. Определение многоугольника. Вершины, стороны, диагонали и периметр многоугольника. Формула суммы углов выпуклого многоугольника.

2. Определение и свойства параллелограмма.

3. Определение и свойства прямоугольника.

4. Определение и свойства ромба.

5. Определение трапеции. Виды трапеций.

6. Определение подобных треугольников. Признаки подобия треугольников.

7. Синус, косинус и тангенс острого угла прямоугольного треугольника.

8. Значение синуса, косинуса и тангенса углов 30 ,45 ,60 .

9. Определение секущей и касательной к окружности.

10. Определение вписанного и центрального углов окружности.

11. Определение серединного перпендикуляра к отрезку. Свойство серединного перпендикуляра.
12. Определение окружности, вписанной в многоугольник. Многоугольник, описанный около окружности.

Свойство описанного четырехугольника.

13. Определение окружности, описанной около многоугольника. Многоугольник, вписанный в окружность. Свойства четырехугольника, вписанного в окружность.

14. Окружность, вписанная в треугольник. Окружность, описанная около треугольника. Нахождение центров этих окружностей.

15. Свойство отрезков пересекающихся хорд.

Вопрос №2.

1. Доказать свойства противоположных сторон и углов параллелограмма.

2. Доказать свойство диагоналей параллелограмма.

3. Доказать признак параллелограмма через равенство и параллельность

двух противоположных сторон.

4. Доказать признак параллелограмма (по точке пересечения диагоналей).

5. Свойство углов при основании равнобедренной трапеции.

6. Доказать свойство диагоналей прямоугольника.

7. Доказать свойства диагоналей ромба.

8. Вывод формулы площади треугольника. Следствия. Формула Герона (без доказательства).

9. Доказать теорему Пифагора.

10. Доказать теорему о средней линии треугольника.

11. Доказать свойство отрезков касательных, проведенных к окружности из одной точки.

12. Доказать теорему о вписанном угле (любой частный случай).

13. Доказать свойство биссектрисы угла.

14. Доказать свойство медиан треугольника.

15. Свойство отрезков пересекающихся хорд.

Задачи к публичному зачёту по геометрии 8 класс.


Задача №1.

1. Ра­ди­ус OB окруж­но­сти с цен­тром в точке O пе­ре­се­ка­ет хорду AC в точке D и пер­пен­ди­ку­ля­рен ей. Най­ди­те длину хорды AC, если BD = 1 см, а ра­ди­ус

о круж­но­сти равен 5 см.








2 . Про­ек­тор пол­но­стью осве­ща­ет экран A вы­со­той 80 см, рас­по­ло­жен­ный на рас­сто­я­нии 250 см от про­ек­то­ра. На каком наи­мень­шем рас­сто­я­нии (в сан­ти­мет­рах) от про­ек­то­ра нужно рас­по­ло­жить экран B вы­со­той 160 см, чтобы он был пол­но­стью освещён, если на­строй­ки про­ек­то­ра оста­ют­ся не­из­мен­ны­ми?











3. Най­ди­те ве­ли­чи­ну (в гра­ду­сах) впи­сан­но­го угла α, опи­ра­ю­ще­го­ся на хорду  AB, рав­ную ра­ди­у­су окруж­но­сти.












4. Два па­ро­хо­да вышли из порта, сле­дуя один на север, дру­гой на запад. Ско­ро­сти их равны со­от­вет­ствен­но 15 км/ч и 20 км/ч. Какое рас­сто­я­ние (в ки­ло­мет­рах) будет между ними через 2 часа?

5 . От стол­ба вы­со­той 9 м к дому на­тя­нут про­вод, ко­то­рый кре­пит­ся на вы­со­те 3 м от земли (см. ри­су­нок). Рас­сто­я­ние от дома до стол­ба 8 м. Вы­чис­ли­те длину про­во­да.








6. В рав­но­сто­рон­нем тре­уголь­ни­ке  ABC  ме­ди­а­ны  BK  и  AM  пе­ре­се­ка­ют­ся в точке O. Най­ди­те .










7 . Най­ди­те гра­дус­ную меру ∠MON, если из­вест­но, NP — диа­метр, а гра­дус­ная мера ∠MNP равна 18°.













8. У тре­уголь­ни­ка со сто­ро­на­ми 16 и 2 про­ве­де­ны вы­со­ты к этим сто­ро­нам. Вы­со­та, про­ведённая к пер­вой сто­ро­не, равна 1. Чему равна вы­со­та, про­ведённая ко вто­рой сто­ро­не?

9. В 60 м одна от дру­гой рас­тут две сосны. Вы­со­та одной 31 м, а дру­гой — 6 м. Най­ди­те рас­сто­я­ние (в мет­рах) между их вер­хуш­ка­ми.





10. Че­ло­век ро­стом 1,7 м стоит на рас­сто­я­нии 8 шагов от стол­ба, на ко­то­ром висит фо­нарь. Тень че­ло­ве­ка равна че­ты­рем шагам. На какой вы­со­те (в метрах) рас­по­ло­жен фо­нарь?





1 1. К окруж­но­сти с цен­тром в точке О про­ве­де­ны ка­са­тель­ная AB и се­ку­щая AO. Най­ди­те ра­ди­ус окруж­но­сти, если AB = 12 см, AO = 13 см.










12. Най­ди­те пе­ри­метр пря­мо­уголь­но­го участ­ка земли, пло­щадь ко­то­ро­го равна 800 м2 и одна сто­ро­на в 2 раза боль­ше дру­гой. Ответ дайте в мет­рах.


13. В пря­мо­уголь­ном тре­уголь­ни­ке один из ка­те­тов равен 10, а угол, ле­жа­щий на­про­тив него, равен 45°. Най­ди­те пло­щадь тре­уголь­ни­ка.


14. В вы­пук­лом че­ты­рех­уголь­ни­ке ABCD , , , . Най­ди­те угол A. Ответ дайте в гра­ду­сах.



15. Сто­ро­на ромба равна 34, а ост­рый угол равен 60° . Вы­со­та ромба, опу­щен­ная из вер­ши­ны ту­по­го угла, делит сто­ро­ну на два от­рез­ка. Ка­ко­вы длины этих от­рез­ков?





Задача №2.

1. Пе­ри­метр пря­мо­уголь­ни­ка равен 56, а диа­го­наль равна 27. Най­ди­те пло­щадь это пря­мо­уголь­ни­ка.

2 . Най­ди­те угол АСО, если его сто­ро­на СА ка­са­ет­ся окруж­но­сти, О — центр окруж­но­сти, а дуга AD окруж­но­сти, за­ключённая внут­ри этого угла, равна 100°.











3. Пря­мая, па­рал­лель­ная ос­но­ва­ни­ям и тра­пе­ции , про­хо­дит через точку пе­ре­се­че­ния диа­го­на­лей тра­пе­ции и пе­ре­се­ка­ет её бо­ко­вые сто­ро­ны и в точ­ках и со­от­вет­ствен­но. Най­ди­те длину от­рез­ка , если см, см.

4. В тре­уголь­ни­ке АВС углы А и С равны 20° и 60° со­от­вет­ствен­но. Най­ди­те угол между вы­со­той ВН и бис­сек­три­сой BD.

5. Отрезки AB и DC лежат на па­рал­лель­ных прямых, а от­рез­ки AC и BD пе­ре­се­ка­ют­ся в точке M. Най­ди­те MC, если AB = 16, DC = 24, AC = 25 .

6. Окруж­ность с цен­тром на сто­ро­не AC тре­уголь­ни­ка ABC про­хо­дит через вер­ши­ну C и ка­са­ет­ся пря­мой AB в точке B. Най­ди­те AC, если диа­метр окруж­но­сти равен 7,5, а AB = 2.


7. В тре­уголь­ни­ке ABC от­ме­че­ны се­ре­ди­ны M и N сто­рон BC и AC соответственно. Пло­щадь треугольника CNM равна 57.

Най­ди­те пло­щадь четырёхугольника ABMN.


8 . Из точки А про­ве­де­ны две ка­са­тель­ные к окруж­но­сти с цен­тром в точке О. Най­ди­те ра­ди­ус окруж­но­сти, если угол между ка­са­тель­ны­ми равен 60°, а рас­сто­я­ние от точки А до точки О равно 8.





9. Окруж­ность пе­ре­се­ка­ет сто­ро­ны AB и AC тре­уголь­ни­ка ABC в точ­ках K и P со­от­вет­ствен­но и про­хо­дит через вер­ши­ны B и C. Най­ди­те длину от­рез­ка KP, если AK = 18, а сто­ро­на AC в 1,2 раза боль­ше сто­ро­ны BC.


10. Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 8 и 18, а пе­ри­метр равен 56. Най­ди­те пло­щадь тра­пе­ции.

11. На сто­ро­нах угла и на его бис­сек­три­се от­ло­же­ны рав­ные от­рез­ки и . Ве­ли­чи­на угла равна 160°. Опре­де­ли­те ве­ли­чи­ну угла .

12. Окружность про­хо­дит через вер­ши­ны А и С тре­уголь­ни­ка АВС и пе­ре­се­ка­ет его сто­ро­ны АВ и ВС в точ­ках К и Е соответственно. Отрезки АЕ и СК перпендикулярны. Най­ди­те ∠КСВ, если ∠АВС = 20°.


13. Биссектрисы углов A и B па­рал­ле­ло­грам­ма ABCD пе­ре­се­ка­ют­ся в точке K. Най­ди­те пло­щадь параллелограмма, если BC = 19, а рас­сто­я­ние от точки K до сто­ро­ны AB равно 7.

14. Найдите от­но­ше­ние двух сто­рон треугольника, если его медиана, вы­хо­дя­щая из их общей вершины, об­ра­зу­ет с этими сто­ро­на­ми углы в 30° и 90°.

15. Высота тре­уголь­ни­ка разбивает его ос­но­ва­ние на два от­рез­ка с дли­на­ми 8 и 9. Най­ди­те длину этой высоты, если известно, что дру­гая высота тре­уголь­ни­ка делит ее пополам.




Получите в подарок сайт учителя

Предмет: Геометрия

Категория: Прочее

Целевая аудитория: 8 класс

Скачать
Вопросы и задачи к публичному зачёту по геометрии 8 класс

Автор: Леотина Ирина Валерьевна

Дата: 05.01.2022

Номер свидетельства: 596916

Похожие файлы

object(ArrayObject)#861 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(104) "Вопросы и задачи к публичному зачёту по геометрии 7 класс"
    ["seo_title"] => string(61) "voprosy_i_zadachi_k_publichnomu_zachiotu_po_geometrii_7_klass"
    ["file_id"] => string(6) "612841"
    ["category_seo"] => string(9) "geometria"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1662922760"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства