Простые механизмы. Условия равновесия рычага. Момент силы. Равновесие тела с закрепленной осью вращения. Виды равновесия тел.
Простые механизмы. Условия равновесия рычага. Момент силы. Равновесие тела с закрепленной осью вращения. Виды равновесия тел.
Тема: Простые механизмы. Условия равновесия рычага. Момент силы. Равновесие тела с закрепленной осью вращения. Виды равновесия тел.
Цель урока: познакомить учеников с разными видами простых механизмов; выяснить условие равновесия рычага; познакомить учеников с применением правила моментов для блоков как разновидностей рычага; познакомить учеников с одним из видов простых механизмов — наклонной плоскостью. Продолжить формирование приемов умственной деятельности – анализа, синтеза, сравнение, систематизации; воспитывать наблюдательность, настойчивость, старательность, дисциплину труда; развивать у них политехнический кругозор, умение аргументировано объяснять закономерности явлений природы, применять теоретические положения для познания действительности, мышление, творческие способности учеников. Формировать навыки работы с учебником.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Простые механизмы. Условия равновесия рычага. Момент силы. Равновесие тела с закрепленной осью вращения. Виды равновесия тел.»
Тема: Простые механизмы. Условия равновесия рычага. Момент силы. Равновесие тела с закрепленной осью вращения. Виды равновесия тел.
Цель урока: познакомить учеников с разными видами простых механизмов; выяснить условие равновесия рычага; познакомить учеников с применением правила моментов для блоков как разновидностей рычага; познакомить учеников с одним из видов простых механизмов — наклонной плоскостью. Продолжить формирование приемов умственной деятельности – анализа, синтеза, сравнение, систематизации; воспитывать наблюдательность, настойчивость, старательность, дисциплину труда; развивать у них политехнический кругозор, умение аргументировано объяснять закономерности явлений природы, применять теоретические положения для познания действительности, мышление, творческие способности учеников. Формировать навыки работы с учебником.
Тип урока: урок изучения нового материала.
План урока
Контроль знаний
10 мин
физический диктант
Демонстрации
6 мин
1. Изменение действия силы с помощью рычага.
2. Равновесие рычага.
3. Момент силы
4. Тело на наклонной плоскости.
Изучение нового материала
26 мин
1. Рычаг.
2. Момент силы. Правило моментов
3. Недвижимый блок.
4. Подвижный блок.
5. Наклонная плоскость.
6. Применение простых механизмов в технике
и живой природе
Закрепление изученного материала
8 мин
1. Контрольные вопросы.
2. Учимся решать задачи.
3. Подумай и отвечай
Изучение нового материала
Мотивация учебной деятельности
Учитель. Итак, мы получили определенные знания о механической работе, а также узнали, что разные устройства выполняют ее с разной скоростью. Сегодня на уроке мы будем продолжать углублять знание о механической работе и поговорим об устройствах, которые с давних времен использовал человек для выполнения работы. Рассмотрим опыт:
Демонстрация 1. Груз поднимают на определенную высоту с помощью динамометра. Тот самый груз вытягивают по наклонной плоскости с помощью того же динамометра.
В процессе беседы ученики анализируют увиденное, делают вывод, что по наклонной плоскости поднимать грузы легче, припоминают, где видели что-то подобное на практике (ученики легко приводят примеры поднимания дерева на трактор или на телегу, загрузка бочки с тяжелым содержимым на грузовую машину и т.п.)
(в тетрадь): Устройства, которые предназначены для преобразования сил, называются простыми механизмами.
1. Рычаг
Используя разные приспособления, человек с незапамятных времен стремился облегчить свою работу, связанную с перемещением и подъемом тяжелых предметов.
В физике приспособления для преобразования движения и силы называют механизмами. Большинство из них были изобретены еще до нашей эры. Еще древние египтяне использовали наклонную плоскость, чтобы поднять тяжелые каменные блоки к вершине пирамиды.
Механизмы, которые используются человеком, могут быть устроены очень сложно, однако для понимания их работы достаточно выучить так называемые простые механизмы — рычаг и наклонную плоскость.
Каждому известно, что тяжелый предмет можно сдвинуть с места с помощью довольно длинного стрежня. Причем этот стрежень оборачивается вокруг недвижимой точки опоры (эту точку называют осью обращения).
Рычаг — это твердый стрежень, который может оборачиваться вокруг недвижимой опоры.
Рычаг — первый простейший механизм, которым человек пользовался на протяжении десятков тысяч лет. Изображение рычага можно найти в древних книгах, на стенах храмов, папирусах. Примером рычагов могут служить ножницы, плоскогубцы.
Рычаг — это необязательно длинный и тонкий предмет. Например, колесо — тоже рычаг, потому что это твердое тело, которое оборачивается вокруг оси.
Введем еще два определения. Линией действия силы назовем прямую, которая проходит через вектор силы. Кратчайшее расстояние от оси рычага к линии действия силы назовем плечом силы. Из курса геометрии вы знаете, что кратчайшее расстояние от точки до прямой — это перпендикуляр к этой прямой.
Выучим условия равновесия рычага исследовательским путем. Возьмем как рычаг крепкий стрежень с делениями, нанесенными на равных расстояниях друг от друга, который может свободно оборачиваться вокруг оси, которая проходит через его середину. Будем подвешивать к рычагу разные грузы, добиваясь того, чтобы рычаг с грузами находился в равновесии (см. рисунок).
Со стороны грузов на рычаг будут действовать силы F1и F2, которые равны весам этих грузов.
Обозначим l1 и l2плечи сил F1и F2, соответственно.
Поставив несколько опытов, мы докажем, что рычаг находится в равновесии под действием двух сил, если:
приложенные к рычагу силы стараются вращать его в противоположных направлениях;
модули приложенных к рычагу сил обратно пропорциональны плечам этих сил:
2. Момент силы. Правило моментов
С тех пор как Архимед установил правило рычага, оно просуществовало в первичном виде почти 1900 лет. И лишь в 1687 году французский ученый П. Вариньон предоставил ему более общей формы, воспользовавшись понятием момента силы.
Произведение модуля силы на его плечо называют моментом силы.
где М — момент силы, F — сила, l— плечо силы.
Докажем, что рычаг находится в равновесии, если момент силы, который вращает его по часовой стрелке, равняется моменту силы, который вращает его против часовой стрелки, то есть
Преобразуем выражение так, чтобы в каждой части равенства стояли величины, которые характеризуют только одну силу: ее модуль и плечо. Мы получим Но — момент силы, который вращает его против часовой стрелки (см. рисунок), а — момент силы, который вращает его по часовой стрелке. Условие равновесия рычага можно теперь сформулировать так: рычаг находится в равновесии, если сумма моментов сил, которые оборачивают рычаг в одном направлении, равняется сумме моментов сил, которые оборачивают его в противоположном направлении. Условие равновесия в таком виде называют правилом моментов. Как вытекает из определения, единицей момента сил является 1 Н* м. Из условия равновесия рычага вытекает, что, используя рычаг, можно получить выигрыш в силе. Силой, приложенной к большему плечу рычага, можно уравновесить силу, которая значительно больше, чем приложенная.
Необходимо обратить внимание учеников на то, что если мы с помощью рычага получаем выигрыш в силе, то мы обязательно проиграем в перемещении.
С помощью рычага можно получить выигрыш не только в силе, но и в перемещении — прикладывая силу к более короткому плечу рычага. Правда, выигрыш в перемещении непременно сопровождается проигрышем в силе.
3. Неподвижный блок
Блок, ось которого закреплена и при подъеме грузов не опускается и не поднимается, называют неподвижным блоком.
Неподвижный блок можно рассматривать как равноплечий рычаг, у которого плечи сил равняются радиусу колеса: OA=OB=r.
Если приложить к концам нити силы, то условием равновесия блока будет равенство приложенных сил: F1= F2.
Отсюда вытекает, что
неподвижный блок не дает выигрыша в силе, но позволяет менять направление действия силы.
Необходимо обратить внимание на то, что неподвижный блок не дает проигрыша в расстоянии: на какую высоту опустится конец веревки, за который мы тянем, на столько же поднимется груз, который прикреплен к другому концу.
4. Подвижный блок
Подвижный блок — это блок, который поднимается и опускается вместе с грузом.
Подвижный блок можно рассматривать как рычаг, который оборачивается вокруг точки прикосновенья веревки и колеса (на рисунке это точка А).
Точка А— точка опоры рычага, ОА— плечо силы Р и АВ— плечо силы F.
Поскольку плечо АВвдвое больше плеча ОА, то сила F вдвое меньше силы Р:
Таким образом,
подвижный блок дает выигрыш в силе в два раза.
Необходимо обратить внимание учеников на то, что, используя подвижный блок, мы проиграем в перемещении тоже в два раза: ведь для поднятия груза на высоту h нам придется выбирать трос длиной 2h.
Кроме того, подвижный блок меняет направление силы, которую мы прикладываем к свободному концу веревки, на противоположное.
5. Наклонная плоскость
Наклонная плоскость применяется для перемещения тяжелых предметов на более высокий уровень без их непосредственного поднятия.
К таким устройствам принадлежат пандусы, эскалаторы, обычные ступеньки, а также конвейеры (с роликами для уменьшения трения).
Измерим вес тележки.
Будем поднимать его вдоль наклонной плоскости.
Мы увидим, что тележку можно поднять силой, которая меньше веса тележки. Если l — длина наклонной плоскости, h — высота наклонной плоскости, P — вес тележки, F — сила, приложенная к тележке, то при отсутствии силы трения можно записать:
Таким образом,
при использовании наклонной плоскости выигрывают в силе в столько раз, во сколько раз длина наклонной плоскости больше ее высоты.
Благодаря тому, что наклонная плоскость позволяет получить выигрыш в силе, причем довольно значительный, если ее длина намного больше высоты, наклонную плоскость использовали еще в давность для поднятия тел, например, при строительстве египетских пирамид.
6. Применение простых механизмов в технике и живой природе.
Для всех простых механизмов характерно следующее: пользуясь ими, можно выиграть или в силе (проигравши в расстоянии), или в расстоянии (проигравши в силе).
Правило рычага лежит в основе действия разного рода инструментов и приоров, что применяются в технике и быту там, где нужен выигрыш в силе или пути. Выигрыш в силе мы имеем при работе с ножницами разных видов и кусачками.
Рычаги разного вида имеются во многих машинах: ручка швейной машины, педали или ручной тормоз велосипеда, педали автомобиля и трактора, клавиши пианино, рукоятки станков, рычаг сверлильного станка и т.д.
Рычаги встречаются в разных частях тела животных и человека. Это, например, конечности, челюсти. Много рычагов можно указать в теле насекомых, птиц, в строении растений.
Вопросы к ученикам в ходе изложения нового материала
Какое назначение простых механизмов?
Что такое линия действия силы?
Как найти плечо силы?
Приведите примеры использования условия равновесия рычага.
Как можно с помощью рычага получить выигрыш в перемещении?
Что характеризует момент силы?
Приведите примеры применения недвижимого блока.
Приведите примеры применения подвижного блока.
Как с помощью блоков получить выигрыш в силе больше, чем вдвое?
Какими простыми механизмами вы пользуетесь в быту? Приведите примеры.
Можно ли рассматривать недвижимый и подвижный блоки как рычаги?
ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА
Учимся решать задачи
1. Запишите правило моментов для случаев, изображенных на рисунках.
2. Плечи рычага равняются 25 см и 40 см. Меньшая из двух вертикальных сил, которые действуют на рычаг, равняется 40 Н. Чему равна вторая сила, если рычаг находится в равновесии?
3. К концам рычага приложены вертикальные силы 25 Н и 15 Н. Длинное плечо рычага равняется 15 см. Какова длина короткого плеча? Рычаг находится в равновесии.
4. Как с помощью двух подвижных блоков получить выигрыш в силе в 4 раза? Можно использовать любое число неподвижных блоков. Приведите 2 решения задачи.
Решение
1) Можно использовать 2 подвижных блока и 1 неподвижный, как показано на левом рисунке ниже. Каждый из подвижных блоков дает выигрыш в силе в 2 раза, поэтому сила натяжения веревки a равняется 2F, а сила натяжения веревки b, что удерживает груз, равняется 4F, то есть суммарный выигрыш в силе в 4 раза.
2) Можно использовать 2 подвижных блока и 2 неподвижных, как показано на правом рисунке ниже. При этом сила натяжения каждой из двух веревок, которые удерживают груз, равняется 2F, благодаря чему выходит суммарный выигрыш в силе в 4 раза.
5. Тележку поднимают по наклонной плоскости, прикладывая силу 100 Н, направленную вдоль наклонной плоскости. Какая масса тележки, если длина наклонной плоскости 2 м, а высота 1 м? (Ответ. 20 кг)
6. Груз массой 300 кг поднимают с помощью одного подвижного блока, прикладывая силу 1600 Н. Какая масса блока? (Ответ. 20 кг)
2. Подумай и отвечай
1. Почему диаметр ведущих колес трактора значительно больше диаметра ведущих колес легкового автомобиля?
2. Почему разматывать нить из полной катушки легче, чем из частично размотанной?
3. Как можно соединить друг с другом неподвижные и подвижные блоки, чтобы получить выигрыш в силе в 6 раз?
4. В каком направлении надо тянуть свободный конец веревки, чтобы легче было поднимать груз?